Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, stemming from a complex interplay of genetic, environmental, and lifestyle factors. Aflatoxin B1 (AFB1), a prevalent food contaminant, is a known HCC risk factor, but its molecular mechanisms remain incompletely understood. This study investigated the contribution of BUB1B, a crucial spindle assembly checkpoint regulator, in AFB1-induced hepatocyte malignant transformation, we assessed AFB1's impact on cell proliferation, viability, cell cycle regulation, and BUB1B expression. BUB1B knockdown via siRNA revealed its role in epithelial-mesenchymal transition (EMT), cell motility, and proliferation. AFB1 exposure significantly altered cell proliferation and cell cycle dynamics, correlating with increased BUB1B expression. Furthermore, we identified a significant interaction between BUB1B and the IL12A-JAK2/STAT4 signaling pathway, suggesting a mechanism for immune evasion and tumor progression. These findings highlight BUB1B's critical role in AFB1-induced hepatocarcinogenesis and establish its potential target for HCC. Further research is needed to fully elucidate the underlying molecular mechanisms and explore the therapeutic implications of BUB1B inhibition in HCC treatment.
Original language | English |
---|---|
Article number | doi.org/10.1016/j.tox.2025.154127 |
Journal | toxicology |
Publication status | Published - 25 Mar 2025 |