TY - JOUR
T1 - Influence of in-house produced biochars on cracks and retained water during drying-wetting cycles
T2 - comparison between conventional plant, animal, and nano-biochars
AU - Kumar, Himanshu
AU - Cai, Weiling
AU - Lai, Junlong
AU - Chen, Peinan
AU - Ganesan, Suriya Prakash
AU - Bordoloi, Sanandam
AU - Liu, Xiaoying
AU - Wen, Yang Ping
AU - Garg, Ankit
AU - Mei, Guoxiong
N1 - Publisher Copyright:
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Purpose: Biochars produced from different feedstocks (such as wood, pig manure) possess varying physical and chemical properties, which have influence on crack and evaporation rate of biochar-amended soil (BAS). Furthermore, influence of compaction state and drying-wetting cycles on evaporation rate and cracking of BAS has not been investigated comprehensively. The objective of this study was to investigate the effects of biochar types, compaction state of BAS, and drying-wetting cycles on crack propagation and retained water (or evaporation rate). Material and methods: An animal and plant feedstock-based biochars were produced in-house from pig manure (PM) and wood (W), respectively. In addition, nano structured chalk and wheat biochar (CWB) were also produced. Soil amended with individual biochars was compacted in petri-glass discs at two densities. Disc specimens were subjected to multiple drying-wetting cycles, and evaporation rate of specimens and crack area were monitored throughout the experimental period (70 days). Images were captured after every 24 h and processed using image processing technique to obtain the crack intensity factor (CIF). Results and discussion: The results show that plant-based W BAS showed the high water retention, i.e., low evaporation rate and low CIF. Furthermore, the crack potential of CW BAS was seen to be higher. In dense compacted soil, maximum CIF% can be reduced from 3.9 to 0.4% for W BAS, from 3.9 to 1.7% for PM BAS, and from 3.9 to 1.6% for CW BAS. Conclusion: WB was able to resist cracking more efficiently than other types of biochar. Evaporation was found to be minimal for plant-based W BAS at 10% biochar percentage. Higher biochar content in soil was seen to increase the water retention of BAS significantly. Dense state of BAS at high biochar content (i.e., 10%) was effective in reducing evaporation rate and crack progression.
AB - Purpose: Biochars produced from different feedstocks (such as wood, pig manure) possess varying physical and chemical properties, which have influence on crack and evaporation rate of biochar-amended soil (BAS). Furthermore, influence of compaction state and drying-wetting cycles on evaporation rate and cracking of BAS has not been investigated comprehensively. The objective of this study was to investigate the effects of biochar types, compaction state of BAS, and drying-wetting cycles on crack propagation and retained water (or evaporation rate). Material and methods: An animal and plant feedstock-based biochars were produced in-house from pig manure (PM) and wood (W), respectively. In addition, nano structured chalk and wheat biochar (CWB) were also produced. Soil amended with individual biochars was compacted in petri-glass discs at two densities. Disc specimens were subjected to multiple drying-wetting cycles, and evaporation rate of specimens and crack area were monitored throughout the experimental period (70 days). Images were captured after every 24 h and processed using image processing technique to obtain the crack intensity factor (CIF). Results and discussion: The results show that plant-based W BAS showed the high water retention, i.e., low evaporation rate and low CIF. Furthermore, the crack potential of CW BAS was seen to be higher. In dense compacted soil, maximum CIF% can be reduced from 3.9 to 0.4% for W BAS, from 3.9 to 1.7% for PM BAS, and from 3.9 to 1.6% for CW BAS. Conclusion: WB was able to resist cracking more efficiently than other types of biochar. Evaporation was found to be minimal for plant-based W BAS at 10% biochar percentage. Higher biochar content in soil was seen to increase the water retention of BAS significantly. Dense state of BAS at high biochar content (i.e., 10%) was effective in reducing evaporation rate and crack progression.
KW - Biochar amended soil
KW - Compacted soil
KW - Cracks
KW - Evaporation rate
KW - Water retention
UR - http://www.scopus.com/inward/record.url?scp=85082200501&partnerID=8YFLogxK
U2 - 10.1007/s11368-020-02573-8
DO - 10.1007/s11368-020-02573-8
M3 - Article
AN - SCOPUS:85082200501
SN - 1439-0108
VL - 20
SP - 1983
EP - 1996
JO - Journal of Soils and Sediments
JF - Journal of Soils and Sediments
IS - 4
ER -