TY - JOUR
T1 - Infestation of Japanese Native Honey Bees by Tracheal Mite and Virus from Non-native European Honey Bees in Japan
AU - Kojima, Yuriko
AU - Toki, Taku
AU - Morimoto, Tomomi
AU - Yoshiyama, Mikio
AU - Kimura, Kiyoshi
AU - Kadowaki, Tatsuhiko
N1 - Funding Information:
TK is grateful to local beekeepers (Y. Hasada, K. Kogami, and T. Arano) and the members of Japan Beekeeping Association for collecting honey bee samples. We are greatly indebted to Yanping (Judy) Chen for valuable comments on the manuscript. This research was supported by Yamada Research Grant; The Sumitomo Foundation; Mitsui & Co., Ltd. Environment Fund, and Grant-in-Aid for Scientific Research from JSPS to TK. A part of this work was also supported by a grant from Promotion of Basic Research Activities for Innovative Biosciences (PRO-BRAIN) to MY.
PY - 2011/11
Y1 - 2011/11
N2 - Invasion of alien species has been shown to cause detrimental effects on habitats of native species. Insect pollinators represent such examples; the introduction of commercial bumble bee species for crop pollination has resulted in competition for an ecological niche with native species, genetic disturbance caused by mating with native species, and pathogen spillover to native species. The European honey bee, Apis mellifera, was first introduced into Japan for apiculture in 1877, and queen bees have been imported from several countries for many years. However, its effects on Japanese native honey bee, Apis cerana japonica, have never been addressed. We thus conducted the survey of honey bee viruses and Acarapis mites using both A. mellifera and A. c. japonica colonies to examine their infestation in native and non-native honey bee species in Japan. Honey bee viruses, Deformed wing virus (DWV), Black queen cell virus (BQCV), Israeli acute paralysis virus (IAPV), and Sacbrood virus (SBV), were found in both A. mellifera and A. c. japonica colonies; however, the infection frequency of viruses in A. c. japonica was lower than that in A. mellifera colonies. Based on the phylogenies of DWV, BQCV, and SBV isolates from A. mellifera and A. c. japonica, DWV and BQCV may infect both honey bee species; meanwhile, SBV has a clear species barrier. For the first time in Japan, tracheal mite (Acarapis woodi) was specifically found in the dead honey bees from collapsing A. c. japonica colonies. This paper thus provides further evidence that tracheal-mite-infested honey bee colonies can die during cool winters with no other disease present. These results demonstrate the infestation of native honey bees by parasite and pathogens of non-native honey bees that are traded globally.
AB - Invasion of alien species has been shown to cause detrimental effects on habitats of native species. Insect pollinators represent such examples; the introduction of commercial bumble bee species for crop pollination has resulted in competition for an ecological niche with native species, genetic disturbance caused by mating with native species, and pathogen spillover to native species. The European honey bee, Apis mellifera, was first introduced into Japan for apiculture in 1877, and queen bees have been imported from several countries for many years. However, its effects on Japanese native honey bee, Apis cerana japonica, have never been addressed. We thus conducted the survey of honey bee viruses and Acarapis mites using both A. mellifera and A. c. japonica colonies to examine their infestation in native and non-native honey bee species in Japan. Honey bee viruses, Deformed wing virus (DWV), Black queen cell virus (BQCV), Israeli acute paralysis virus (IAPV), and Sacbrood virus (SBV), were found in both A. mellifera and A. c. japonica colonies; however, the infection frequency of viruses in A. c. japonica was lower than that in A. mellifera colonies. Based on the phylogenies of DWV, BQCV, and SBV isolates from A. mellifera and A. c. japonica, DWV and BQCV may infect both honey bee species; meanwhile, SBV has a clear species barrier. For the first time in Japan, tracheal mite (Acarapis woodi) was specifically found in the dead honey bees from collapsing A. c. japonica colonies. This paper thus provides further evidence that tracheal-mite-infested honey bee colonies can die during cool winters with no other disease present. These results demonstrate the infestation of native honey bees by parasite and pathogens of non-native honey bees that are traded globally.
UR - http://www.scopus.com/inward/record.url?scp=80255133248&partnerID=8YFLogxK
U2 - 10.1007/s00248-011-9947-z
DO - 10.1007/s00248-011-9947-z
M3 - Article
C2 - 21960435
AN - SCOPUS:80255133248
SN - 0095-3628
VL - 62
SP - 895
EP - 906
JO - Microbial Ecology
JF - Microbial Ecology
IS - 4
ER -