TY - GEN
T1 - Improving disentanglement-based image-to-image translation with feature joint block fusion
AU - Zhang, Zhejian
AU - Zhang, Rui
AU - Wang, Qiu Feng
AU - Huang, Kaizhu
N1 - Publisher Copyright:
© Springer Nature Switzerland AG 2020.
PY - 2020
Y1 - 2020
N2 - Image-to-image translation aims to change attributes or domains of images, where the feature disentanglement based method is widely used recently due to its feasibility and effectiveness. In this method, a feature extractor is usually integrated in the encoder-decoder architecture generative adversarial network (GAN), which extracts features from domains and images, respectively. However, the two types of features are not properly combined, resulting in blurry generated images and indistinguishable translated domains. To alleviate this issue, we propose a new feature fusion approach to leverage the ability of the feature disentanglement. Instead of adding the two extracted features directly, we design a joint block fusion that contains integration, concatenation, and squeeze operations, thus allowing the generator to take full advantage of the two features and generate more photo-realistic images. We evaluate both the classification accuracy and Fréchet Inception Distance (FID) of the proposed method on two benchmark datasets of Alps Seasons and CelebA. Extensive experimental results demonstrate that the proposed joint block fusion can improve both the discriminability of domains and the quality of translated image. Specially, the classification accuracies are improved by 1.04% (FID reduced by 1.22) and 1.87% (FID reduced by 4.96) on Alps Seasons and CelebA, respectively.
AB - Image-to-image translation aims to change attributes or domains of images, where the feature disentanglement based method is widely used recently due to its feasibility and effectiveness. In this method, a feature extractor is usually integrated in the encoder-decoder architecture generative adversarial network (GAN), which extracts features from domains and images, respectively. However, the two types of features are not properly combined, resulting in blurry generated images and indistinguishable translated domains. To alleviate this issue, we propose a new feature fusion approach to leverage the ability of the feature disentanglement. Instead of adding the two extracted features directly, we design a joint block fusion that contains integration, concatenation, and squeeze operations, thus allowing the generator to take full advantage of the two features and generate more photo-realistic images. We evaluate both the classification accuracy and Fréchet Inception Distance (FID) of the proposed method on two benchmark datasets of Alps Seasons and CelebA. Extensive experimental results demonstrate that the proposed joint block fusion can improve both the discriminability of domains and the quality of translated image. Specially, the classification accuracies are improved by 1.04% (FID reduced by 1.22) and 1.87% (FID reduced by 4.96) on Alps Seasons and CelebA, respectively.
KW - Feature disentanglement
KW - Feature fusion
KW - Generative adversarial networks
KW - Image-to-image translation
UR - http://www.scopus.com/inward/record.url?scp=85080957604&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-39431-8_52
DO - 10.1007/978-3-030-39431-8_52
M3 - Conference Proceeding
AN - SCOPUS:85080957604
SN - 9783030394301
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 540
EP - 549
BT - Advances in Brain Inspired Cognitive Systems - 10th International Conference, BICS 2019, Proceedings
A2 - Ren, Jinchang
A2 - Hussain, Amir
A2 - Zhao, Huimin
A2 - Cai, Jun
A2 - Chen, Rongjun
A2 - Xiao, Yinyin
A2 - Huang, Kaizhu
A2 - Zheng, Jiangbin
PB - Springer
T2 - 10th International Conference on Brain Inspired Cognitive Systems, BICS 2019
Y2 - 13 July 2019 through 14 July 2019
ER -