Improving deep neural network performance with kernelized min-max objective

Kai Yao, Kaizhu Huang*, Rui Zhang, Amir Hussain

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

2 Citations (Scopus)

Abstract

In this paper, we present a novel training strategy using kernelized Min-Max objective to enable improved object recognition performance on deep neural networks (DNN), e.g., convolutional neural networks (CNN). Without changing the other part of the original model, the kernelized Min-Max objective works by combining the kernel trick with the Min-Max objective and being embedded into a high layer of the networks in the training phase. The proposed kernelized objective explicitly enforces the learned object feature maps to maintain in a kernel space the least compactness for each category manifold and the biggest margin among different category manifolds. With very few additional computation costs, the proposed strategy can be widely used in different DNN models. Extensive experiments with shallow convolutional neural network model, deep convolutional neural network model, and deep residual neural network model on two benchmark datasets show that the proposed approach outperforms those competitive models.

Original languageEnglish
Title of host publicationNeural Information Processing - 25th International Conference, ICONIP 2018, Proceedings
EditorsLong Cheng, Andrew Chi Sing Leung, Seiichi Ozawa
PublisherSpringer Verlag
Pages182-191
Number of pages10
ISBN (Print)9783030041663
DOIs
Publication statusPublished - 2018
Event25th International Conference on Neural Information Processing, ICONIP 2018 - Siem Reap, Cambodia
Duration: 13 Dec 201816 Dec 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11301 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th International Conference on Neural Information Processing, ICONIP 2018
Country/TerritoryCambodia
CitySiem Reap
Period13/12/1816/12/18

Cite this