TY - JOUR
T1 - Improved two-view interactional fuzzy learning based on mutual-rectification and knowledge-mergence
AU - Zhou, Ta
AU - Yan, Wei
AU - Xia, Zhengxin
AU - Wang, Shuihua
AU - Ren, Ge
AU - Li, Bing
AU - Ding, Weiping
AU - Cai, Jing
N1 - Publisher Copyright:
© 2025 Elsevier Ltd
PY - 2025/9
Y1 - 2025/9
N2 - Nasopharyngeal carcinoma (NPC) is a malignant tumor that originates from the back of the nasal canal from above the soft palate to the upper larynx. Because the nasopharyngeal location is deeply hidden, it is often difficult for a single imaging means to clarify its complex adjacency. In addition, there exist some differences and uncertainties in its clinical manifestations. Although two-view fuzzy classifiers can effectively tap into the nasopharyngeal location for hidden information and exhibit good classification performance, existing fuzzy reasoning for predicting whether or not a nasopharyngeal cancer often stems from the inability to reuse the one-sided rules. Therefore, a novel two-view mutual rectification and knowledge mergence Takagi-Sugeno-Kang fuzzy classifier (TVRM-TFC) is proposed here to address the challenge of using imaging means to fine-tune the organ tissues. Firstly, Kullback-Leibler divergence (KLIC) is used to select important features from various imaging sections (i.e., pieces of knowledge). Secondly, the interpretable zero-order Takagi-Sugeno-Kang (TSK) fuzzy classifier is used as the basic training unit to simultaneously obtain satisfactory accuracies and concise linguistic interpretability. Thirdly, from the perspective of both imaging means and the organ, this study fine-tunes the information required for decision-making between different imaging means, so that the complementary advantages of the different views may improve the decision-making information and thus increase decision accuracies. Finally, the perspective of imaging technology and the organ are merged to capture decision-making knowledge. These decision-making advantages from different views are organically integrated to compensate information and further optimize the decision-making information. The merits of the proposed classifier are demonstrated through comparative experimental analysis on CT and MRI data.
AB - Nasopharyngeal carcinoma (NPC) is a malignant tumor that originates from the back of the nasal canal from above the soft palate to the upper larynx. Because the nasopharyngeal location is deeply hidden, it is often difficult for a single imaging means to clarify its complex adjacency. In addition, there exist some differences and uncertainties in its clinical manifestations. Although two-view fuzzy classifiers can effectively tap into the nasopharyngeal location for hidden information and exhibit good classification performance, existing fuzzy reasoning for predicting whether or not a nasopharyngeal cancer often stems from the inability to reuse the one-sided rules. Therefore, a novel two-view mutual rectification and knowledge mergence Takagi-Sugeno-Kang fuzzy classifier (TVRM-TFC) is proposed here to address the challenge of using imaging means to fine-tune the organ tissues. Firstly, Kullback-Leibler divergence (KLIC) is used to select important features from various imaging sections (i.e., pieces of knowledge). Secondly, the interpretable zero-order Takagi-Sugeno-Kang (TSK) fuzzy classifier is used as the basic training unit to simultaneously obtain satisfactory accuracies and concise linguistic interpretability. Thirdly, from the perspective of both imaging means and the organ, this study fine-tunes the information required for decision-making between different imaging means, so that the complementary advantages of the different views may improve the decision-making information and thus increase decision accuracies. Finally, the perspective of imaging technology and the organ are merged to capture decision-making knowledge. These decision-making advantages from different views are organically integrated to compensate information and further optimize the decision-making information. The merits of the proposed classifier are demonstrated through comparative experimental analysis on CT and MRI data.
KW - Knowledge-mergence
KW - mutual-rectification
KW - NPC image recognition
KW - TSK fuzzy classifier
KW - Two-view learning
UR - http://www.scopus.com/inward/record.url?scp=105004557454&partnerID=8YFLogxK
U2 - 10.1016/j.neunet.2025.107576
DO - 10.1016/j.neunet.2025.107576
M3 - Article
AN - SCOPUS:105004557454
SN - 0893-6080
VL - 189
JO - Neural Networks
JF - Neural Networks
M1 - 107576
ER -