Improve deep learning with unsupervised objective

Shufei Zhang, Kaizhu Huang*, Rui Zhang, Amir Hussain

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

Abstract

We propose a novel approach capable of embedding the unsupervised objective into hidden layers of the deep neural network (DNN) for preserving important unsupervised information. To this end, we exploit a very simple yet effective unsupervised method, i.e. principal component analysis (PCA), to generate the unsupervised “label" for the latent layers of DNN. Each latent layer of DNN can then be supervised not just by the class label, but also by the unsupervised “label" so that the intrinsic structure information of data can be learned and embedded. Compared with traditional methods which combine supervised and unsupervised learning, our proposed model avoids the needs for layer-wise pre-training and complicated model learning e.g. in deep autoencoder. We show that the resulting model achieves state-of-the-art performance in both face and handwriting data simply with learning of unsupervised “labels".

Original languageEnglish
Title of host publicationNeural Information Processing - 24th International Conference, ICONIP 2017, Proceedings
EditorsYuanqing Li, Derong Liu, Shengli Xie, El-Sayed M. El-Alfy, Dongbin Zhao
PublisherSpringer Verlag
Pages720-728
Number of pages9
ISBN (Print)9783319700861
DOIs
Publication statusPublished - 2017
Event24th International Conference on Neural Information Processing, ICONIP 2017 - Guangzhou, China
Duration: 14 Nov 201718 Nov 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10634 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference24th International Conference on Neural Information Processing, ICONIP 2017
Country/TerritoryChina
CityGuangzhou
Period14/11/1718/11/17

Keywords

  • Deep learning
  • Multi-layer perceptron
  • Recognition
  • Unsupervised learning

Fingerprint

Dive into the research topics of 'Improve deep learning with unsupervised objective'. Together they form a unique fingerprint.

Cite this