TY - JOUR
T1 - Identification of two HLA-A*0201 immunogenic epitopes of lactate dehydrogenase C (LDHC)
T2 - potential novel targets for cancer immunotherapy
AU - Thomas, Remy
AU - Shaath, Hibah
AU - Naik, Adviti
AU - Toor, Salman M.
AU - Elkord, Eyad
AU - Decock, Julie
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/3/1
Y1 - 2020/3/1
N2 - Lactate dehydrogenase C (LDHC) is an archetypical cancer testis antigen with limited expression in adult tissues and re-expression in tumors. This restricted expression pattern together with the important role of LDHC in cancer metabolism renders LDHC a potential target for immunotherapy. This study is the first to investigate the immunogenicity of LDHC using T cells from healthy individuals. LDHC-specific T cell responses were induced by in vitro stimulation with synthetic peptides, or by priming with autologous peptide-pulsed dendritic cells. We evaluated T cell activation by IFN-γ ELISpot and determined cytolytic activity of HLA-A*0201-restricted T cells in breast cancer cell co-cultures. In vitro T cell stimulation induced IFN-γ secretion in response to numerous LDHC-derived peptides. Analysis of HLA-A*0201 responses revealed a significant T cell activation after stimulation with peptide pools 2 (PP2) and 8 (PP8). The PP2- and PP8-specific T cells displayed cytolytic activity against breast cancer cells with endogenous LDHC expression within a HLA-A*0201 context. We identified peptides LDHC41−55 and LDHC288−303 from PP2 and PP8 to elicit a functional cellular immune response. More specifically, we found an increase in IFN-γ secretion by CD8 + T cells and cancer-cell-killing of HLA-A*0201/LDHC positive breast cancer cells by LDHC41−55- and LDHC288−303-induced T cells, albeit with a possible antigen recognition threshold. The majority of induced T cells displayed an effector memory phenotype. To conclude, our findings support the rationale to assess LDHC as a targetable cancer testis antigen for immunotherapy, and in particular the HLA-A*0201 restricted LDHC41–55 and LDHC288–303 peptides within LDHC.
AB - Lactate dehydrogenase C (LDHC) is an archetypical cancer testis antigen with limited expression in adult tissues and re-expression in tumors. This restricted expression pattern together with the important role of LDHC in cancer metabolism renders LDHC a potential target for immunotherapy. This study is the first to investigate the immunogenicity of LDHC using T cells from healthy individuals. LDHC-specific T cell responses were induced by in vitro stimulation with synthetic peptides, or by priming with autologous peptide-pulsed dendritic cells. We evaluated T cell activation by IFN-γ ELISpot and determined cytolytic activity of HLA-A*0201-restricted T cells in breast cancer cell co-cultures. In vitro T cell stimulation induced IFN-γ secretion in response to numerous LDHC-derived peptides. Analysis of HLA-A*0201 responses revealed a significant T cell activation after stimulation with peptide pools 2 (PP2) and 8 (PP8). The PP2- and PP8-specific T cells displayed cytolytic activity against breast cancer cells with endogenous LDHC expression within a HLA-A*0201 context. We identified peptides LDHC41−55 and LDHC288−303 from PP2 and PP8 to elicit a functional cellular immune response. More specifically, we found an increase in IFN-γ secretion by CD8 + T cells and cancer-cell-killing of HLA-A*0201/LDHC positive breast cancer cells by LDHC41−55- and LDHC288−303-induced T cells, albeit with a possible antigen recognition threshold. The majority of induced T cells displayed an effector memory phenotype. To conclude, our findings support the rationale to assess LDHC as a targetable cancer testis antigen for immunotherapy, and in particular the HLA-A*0201 restricted LDHC41–55 and LDHC288–303 peptides within LDHC.
KW - Adoptive T cell therapy
KW - Cancer immunotherapy
KW - Cancer testis antigen
KW - Epitopes
KW - Lactate dehydrogenase
KW - LDHC
UR - http://www.scopus.com/inward/record.url?scp=85078042220&partnerID=8YFLogxK
U2 - 10.1007/s00262-020-02480-4
DO - 10.1007/s00262-020-02480-4
M3 - Article
C2 - 31932876
AN - SCOPUS:85078042220
SN - 0340-7004
VL - 69
SP - 449
EP - 463
JO - Cancer Immunology, Immunotherapy
JF - Cancer Immunology, Immunotherapy
IS - 3
ER -