TY - JOUR
T1 - Honey bee parasitic mite contains the sensilla-rich sensory organ on the foreleg tarsus expressing ionotropic receptors with conserved functions
AU - Lei, Jing
AU - Liu, Qiushi
AU - Kadowaki, Tatsuhiko
N1 - Publisher Copyright:
© 2019 Lei, Liu and Kadowaki. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
PY - 2019
Y1 - 2019
N2 - Honey bee parasitic mites (Tropilaelaps mercedesae and Varroa destructor) detect temperature, humidity, and odor but the underlying sensory mechanisms are poorly understood. To uncover how T. mercedesae responds to environmental stimuli inside a hive, we first identified the sensilla-rich sensory organ on the foreleg tarsus. The organ appeared to correspond to Haller's organ in ticks and contained four types of sensilla, which may respond to different stimuli based on their morphology. We searched for differentially expressed genes between the forelegs and hindlegs to identify mRNAs potentially associated with the sensory organ. The forelegs were enriched with mRNAs encoding sensory proteins such as ionotropic receptors (IRs) and gustatory receptors, as well as proteins involved in ciliary transport. We also found that T. mercedesae IR25a and IR93a were capable of rescuing temperature and humidity preference defects in Drosophila melanogaster IR25a and IR93a mutants. These results demonstrate that the structures and physiological functions of ancient IRs have been conserved during arthropod evolution. Our study provides insight into the sensory mechanisms of honey bee parasitic mites, as well as potential targets for methods to control the most serious honey bee pest.
AB - Honey bee parasitic mites (Tropilaelaps mercedesae and Varroa destructor) detect temperature, humidity, and odor but the underlying sensory mechanisms are poorly understood. To uncover how T. mercedesae responds to environmental stimuli inside a hive, we first identified the sensilla-rich sensory organ on the foreleg tarsus. The organ appeared to correspond to Haller's organ in ticks and contained four types of sensilla, which may respond to different stimuli based on their morphology. We searched for differentially expressed genes between the forelegs and hindlegs to identify mRNAs potentially associated with the sensory organ. The forelegs were enriched with mRNAs encoding sensory proteins such as ionotropic receptors (IRs) and gustatory receptors, as well as proteins involved in ciliary transport. We also found that T. mercedesae IR25a and IR93a were capable of rescuing temperature and humidity preference defects in Drosophila melanogaster IR25a and IR93a mutants. These results demonstrate that the structures and physiological functions of ancient IRs have been conserved during arthropod evolution. Our study provides insight into the sensory mechanisms of honey bee parasitic mites, as well as potential targets for methods to control the most serious honey bee pest.
KW - Ciliary transport
KW - Honey bee decline
KW - Honey bee parasitic mite
KW - Ionotropic receptors
KW - Sensory organ
UR - http://www.scopus.com/inward/record.url?scp=85068253336&partnerID=8YFLogxK
U2 - 10.3389/fphys.2019.00556
DO - 10.3389/fphys.2019.00556
M3 - Article
AN - SCOPUS:85068253336
SN - 1664-042X
VL - 10
JO - Frontiers in Physiology
JF - Frontiers in Physiology
IS - MAY
M1 - 556
ER -