Heterogeneous OH Oxidation, Shielding Effects, and Implications for the Atmospheric Fate of Terbuthylazine and Other Pesticides

Joanna Socorro, Pascale S.J. Lakey*, Lei Han, Thomas Berkemeier, Gerhard Lammel, Cornelius Zetzsch, Ulrich Pöschl, Manabu Shiraiwa

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Terbuthylazine (TBA) is a widely used herbicide, and its heterogeneous reaction with OH radicals is important for assessing its potential to undergo atmospheric long-range transport and to affect the environment and public health. The apparent reaction rate coefficients obtained in different experimental investigations, however, vary by orders of magnitude depending on the applied experimental techniques and conditions. In this study, we used a kinetic multilayer model of aerosol chemistry with reversible surface adsorption and bulk diffusion (KM-SUB) in combination with a Monte Carlo genetic algorithm to simulate the measured decay rates of TBA. Two experimental data sets available from different studies can be described with a consistent set of kinetic parameters resolving the interplay of chemical reaction, mass transport, and shielding effects. Our study suggests that mass transport and shielding effects can substantially extend the atmospheric lifetime of reactive pesticides from a few days to weeks, with strong implications for long-range transport and potential health effects of these substances.

Original languageEnglish
Pages (from-to)13749-13754
Number of pages6
JournalEnvironmental Science and Technology
Volume51
Issue number23
DOIs
Publication statusPublished - 5 Dec 2017
Externally publishedYes

Cite this