Graphgan: Graph representation learning with generative adversarial nets

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, Minyi Guo*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

461 Citations (Scopus)

Abstract

The goal of graph representation learning is to embed each vertex in a graph into a low-dimensional vector space. Existing graph representation learning methods can be classified into two categories: generative models that learn the underlying connectivity distribution in the graph, and discriminative models that predict the probability of edge existence between a pair of vertices. In this paper, we propose GraphGAN, an innovative graph representation learning framework unifying above two classes of methods, in which the generative model and discriminative model play a game-theoretical minimax game. Specifically, for a given vertex, the generative model tries to fit its underlying true connectivity distribution over all other vertices and produces “fake” samples to fool the discriminative model, while the discriminative model tries to detect whether the sampled vertex is from ground truth or generated by the generative model. With the competition between these two models, both of them can alternately and iteratively boost their performance. Moreover, when considering the implementation of generative model, we propose a novel graph softmax to overcome the limitations of traditional softmax function, which can be proven satisfying desirable properties of normalization, graph structure awareness, and computational efficiency. Through extensive experiments on real-world datasets, we demonstrate that GraphGAN achieves substantial gains in a variety of applications, including link prediction, node classification, and recommendation, over state-of-the-art baselines.

Original languageEnglish
Title of host publication32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PublisherAAAI press
Pages2508-2515
Number of pages8
ISBN (Electronic)9781577358008
Publication statusPublished - 2018
Externally publishedYes
Event32nd AAAI Conference on Artificial Intelligence, AAAI 2018 - New Orleans, United States
Duration: 2 Feb 20187 Feb 2018

Publication series

Name32nd AAAI Conference on Artificial Intelligence, AAAI 2018

Conference

Conference32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Country/TerritoryUnited States
CityNew Orleans
Period2/02/187/02/18

Cite this