TY - JOUR
T1 - GM-CBAM-ResNet
T2 - A Lightweight Deep Learning Network for Diagnosis of COVID-19
AU - Zhu, Junjiang
AU - Zhang, Yihui
AU - Ma, Cheng
AU - Wu, Jiaming
AU - Wang, Xuchen
AU - Kong, Dongdong
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/3
Y1 - 2025/3
N2 - COVID-19 can cause acute infectious diseases of the respiratory system, and may probably lead to heart damage, which will seriously threaten human health. Electrocardiograms (ECGs) have the advantages of being low cost, non-invasive, and radiation free, and is widely used for evaluating heart health status. In this work, a lightweight deep learning network named GM-CBAM-ResNet is proposed for diagnosing COVID-19 based on ECG images. GM-CBAM-ResNet is constructed by replacing the convolution module with the Ghost module (GM) and adding the convolutional block attention module (CBAM) in the residual module of ResNet. To reveal the superiority of GM-CBAM-ResNet, the other three methods (ResNet, GM-ResNet, and CBAM-ResNet) are also analyzed from the following aspects: model performance, complexity, and interpretability. The model performance is evaluated by using the open ‘ECG Images dataset of Cardiac and COVID-19 Patients’. The complexity is reflected by comparing the number of model parameters. The interpretability is analyzed by utilizing Gradient-weighted Class Activation Mapping (Grad-CAM). Parameter statistics indicate that, on the basis of ResNet19, the number of model parameters of GM-CBAM-ResNet19 is reduced by 45.4%. Experimental results show that, under less model complexity, GM-CBAM-ResNet19 improves the diagnostic accuracy by approximately 5% in comparison with ResNet19. Additionally, the interpretability analysis shows that CBAM can suppress the interference of grid backgrounds and ensure higher diagnostic accuracy under lower model complexity. This work provides a lightweight solution for the rapid and accurate diagnosing of COVD-19 based on ECG images, which holds significant practical deployment value.
AB - COVID-19 can cause acute infectious diseases of the respiratory system, and may probably lead to heart damage, which will seriously threaten human health. Electrocardiograms (ECGs) have the advantages of being low cost, non-invasive, and radiation free, and is widely used for evaluating heart health status. In this work, a lightweight deep learning network named GM-CBAM-ResNet is proposed for diagnosing COVID-19 based on ECG images. GM-CBAM-ResNet is constructed by replacing the convolution module with the Ghost module (GM) and adding the convolutional block attention module (CBAM) in the residual module of ResNet. To reveal the superiority of GM-CBAM-ResNet, the other three methods (ResNet, GM-ResNet, and CBAM-ResNet) are also analyzed from the following aspects: model performance, complexity, and interpretability. The model performance is evaluated by using the open ‘ECG Images dataset of Cardiac and COVID-19 Patients’. The complexity is reflected by comparing the number of model parameters. The interpretability is analyzed by utilizing Gradient-weighted Class Activation Mapping (Grad-CAM). Parameter statistics indicate that, on the basis of ResNet19, the number of model parameters of GM-CBAM-ResNet19 is reduced by 45.4%. Experimental results show that, under less model complexity, GM-CBAM-ResNet19 improves the diagnostic accuracy by approximately 5% in comparison with ResNet19. Additionally, the interpretability analysis shows that CBAM can suppress the interference of grid backgrounds and ensure higher diagnostic accuracy under lower model complexity. This work provides a lightweight solution for the rapid and accurate diagnosing of COVD-19 based on ECG images, which holds significant practical deployment value.
KW - convolutional block attention module (CBAM)
KW - COVID-19
KW - deep learning
KW - ECG images
KW - ghost module (GM)
KW - lightweight
UR - http://www.scopus.com/inward/record.url?scp=105001133492&partnerID=8YFLogxK
U2 - 10.3390/jimaging11030076
DO - 10.3390/jimaging11030076
M3 - Article
AN - SCOPUS:105001133492
SN - 2313-433X
VL - 11
JO - Journal of Imaging
JF - Journal of Imaging
IS - 3
M1 - 76
ER -