Abstract
The integration of digital twin technology with structural health monitoring (SHM) is revolutionizing the assessment and maintenance of critical infrastructure, particularly bridges. Digital twins—virtual, data-driven replicas of physical structures—enable real-time monitoring by continuously synchronizing sensor data with computational models. This study presents the development of a real-time digital twin for a three-span steel railway bridge, utilizing a high-fidelity finite element (FE) model built using OpenSeesPy v 3.5 and instrumented with 18 strategically placed accelerometers. The dynamic properties of the bridge are extracted using Stochastic Subspace Identification (SSI), enabling an accurate estimation of modal parameters. To enhance the fidelity of the digital twin, a genetic algorithm-based model-updating strategy is implemented, optimizing the steel elastic modulus to minimize discrepancies between measured and simulated frequencies and mode shapes. The results demonstrate a remarkable reduction in frequency errors (below 5%) and a significant improvement in modal shape correlation (MAC > 0.93 post-calibration), confirming the model’s ability to reflect the bridge’s true condition. This work underscores the potential of digital twins in predictive maintenance, early damage detection, and life-cycle management of bridge infrastructure, offering a scalable framework for real-time SHM in complex structural systems.
Original language | English |
---|---|
Article number | 4074 |
Journal | Applied Sciences |
Volume | 15 |
Issue number | 8 |
DOIs | |
Publication status | Published - Apr 2025 |
Keywords
- digital twin
- genetic algorithms
- model updating
- real-time monitoring
- sensor data integration
- structural health monitoring (SHM)