Abstract
Image generation is a long-standing problem in the machine learning and computer vision areas. In order to generate images with high diversity, we propose a novel model called generative adversarial networks with mixture of t-distributions noise (tGANs). In tGANs, the latent generative space is formulated using a mixture of t-distributions. Particularly, the parameters of the components in the mixture of t-distributions can be learned along with others in the model. To improve the diversity of the generated images in each class, each noise vector and a class codeword are concatenated as the input of the generator of tGANs. In addition, a classification loss is added to both the generator and the discriminator losses to strengthen their performances. We have conducted extensive experiments to compare tGANs with a state-of-the-art pixel by pixel image generation approach, pixelCNN, and related GAN-based models. The experimental results and statistical comparisons demonstrate that tGANs perform significantly better than pixleCNN and related GAN-based models for diverse image generation.
Original language | English |
---|---|
Pages (from-to) | 374-381 |
Number of pages | 8 |
Journal | Neural Networks |
Volume | 122 |
DOIs | |
Publication status | Published - Feb 2020 |
Keywords
- Class codeword
- Diversity
- Generate adversarial networks
- Image generation
- Mixture of t-distributions