Gaussian Backbone-Based Spherical Evolutionary Algorithm with Cross-search for Engineering Problems

Yupeng Li, Dong Zhao*, Ali Asghar Heidari, Shuihua Wang, Huiling Chen*, Yudong Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

In recent years, with the increasing demand for social production, engineering design problems have gradually become more and more complex. Many novel and well-performing meta-heuristic algorithms have been studied and developed to cope with this problem. Among them, the Spherical Evolutionary Algorithm (SE) is one of the classical representative methods that proposed in recent years with admirable optimization performance. However, it tends to stagnate prematurely to local optima in solving some specific problems. Therefore, this paper proposes an SE variant integrating the Cross-search Mutation (CSM) and Gaussian Backbone Strategy (GBS), called CGSE. In this study, the CSM can enhance its social learning ability, which strengthens the utilization rate of SE on effective information; the GBS cooperates with the original rules of SE to further improve the convergence effect of SE. To objectively demonstrate the core advantages of CGSE, this paper designs a series of global optimization experiments based on IEEE CEC2017, and CGSE is used to solve six engineering design problems with constraints. The final experimental results fully showcase that, compared with the existing well-known methods, CGSE has a very significant competitive advantage in global tasks and has certain practical value in real applications. Therefore, the proposed CGSE is a promising and first-rate algorithm with good potential strength in the field of engineering design.

Original languageEnglish
Pages (from-to)1055-1091
Number of pages37
JournalJournal of Bionic Engineering
Volume21
Issue number2
DOIs
Publication statusPublished - Mar 2024

Keywords

  • Engineering optimization
  • Global optimization
  • Meta-heuristic algorithms
  • Spherical evolution algorithm

Fingerprint

Dive into the research topics of 'Gaussian Backbone-Based Spherical Evolutionary Algorithm with Cross-search for Engineering Problems'. Together they form a unique fingerprint.

Cite this