Fine-Grained Image-Text Matching by Cross-Modal Hard Aligning Network

Zhengxin Pan, Fangyu Wu*, Bailing Zhang

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

31 Citations (Scopus)

Abstract

Current state-of-the-art image-text matching methods implicitly align the visual-semantic fragments, like regions in images and words in sentences, and adopt cross-attention mechanism to discover fine-grained cross-modal semantic correspondence. However, the cross-attention mechanism may bring redundant or irrelevant region-word alignments, degenerating retrieval accuracy and limiting efficiency. Although many researchers have made progress in mining meaningful alignments and thus improving accuracy, the problem of poor efficiency remains unresolved. In this work, we propose to learn fine-grained image-text matching from the perspective of information coding. Specifically, we suggest a coding framework to explain the fragments aligning process, which provides a novel view to reexamine the cross-attention mechanism and analyze the problem of redundant alignments. Based on this framework, a Cross-modal Hard Aligning Network (CHAN) is designed, which comprehensively exploits the most relevant region-word pairs and eliminates all other alignments. Extensive experiments conducted on two public datasets, MS-COCO and Flickr30K, verify that the relevance of the most associated word-region pairs is discriminative enough as an indicator of the image-text similarity, with superior accuracy and efficiency over the state-of-the-art approaches on the bidirectional image and text retrieval tasks. Our code will be available at https://github.com/ppanzx/CHAN.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PublisherIEEE Computer Society
Pages19275-19284
Number of pages10
ISBN (Electronic)9798350301298
DOIs
Publication statusPublished - 22 Aug 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada
Duration: 18 Jun 202322 Jun 2023

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2023-June
ISSN (Print)1063-6919

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Country/TerritoryCanada
CityVancouver
Period18/06/2322/06/23

Keywords

  • Multi-modal learning

Fingerprint

Dive into the research topics of 'Fine-Grained Image-Text Matching by Cross-Modal Hard Aligning Network'. Together they form a unique fingerprint.

Cite this