@inproceedings{0a144f621e494c418514310c1645c0f3,
title = "Feature Representation Matters: End-to-End Learning for Reference-Based Image Super-Resolution",
abstract = "In this paper, we are aiming for a general reference-based super-resolution setting: it does not require the low-resolution image and the high-resolution reference image to be well aligned or with a similar texture. Instead, we only intend to transfer the relevant textures from reference images to the output super-resolution image. To this end, we engaged neural texture transfer to swap texture features between the low-resolution image and the high-resolution reference image. We identified the importance of designing a super-resolution task-specific features rather than classification oriented features for neural texture transfer, making the feature extractor more compatible with the image synthesis task. We develop an end-to-end training framework for the reference-based super-resolution task, where the feature encoding network prior to matching and swapping is jointly trained with the image synthesis network. We also discovered that learning the high-frequency residual is an effective way for the reference-based super-resolution task. Without bells and whistles, the proposed method E2ENT achieved better performance than state-of-the method (i.e., SRNTT with five loss functions) with only two basic loss functions. Extensive experimental results on several datasets demonstrate that the proposed method E2ENT can achieve superior performance to existing best models both quantitatively and qualitatively.",
keywords = "CUFED5, Feature matching, Feature swapping, Flickr1024, Reference-based, Super-resolution",
author = "Yanchun Xie and Jimin Xiao and Mingjie Sun and Chao Yao and Kaizhu Huang",
note = "Publisher Copyright: {\textcopyright} 2020, Springer Nature Switzerland AG.; 16th European Conference on Computer Vision, ECCV 2020 ; Conference date: 23-08-2020 Through 28-08-2020",
year = "2020",
doi = "10.1007/978-3-030-58548-8_14",
language = "English",
isbn = "9783030585471",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "230--245",
editor = "Andrea Vedaldi and Horst Bischof and Thomas Brox and Jan-Michael Frahm",
booktitle = "Computer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings",
}