TY - JOUR
T1 - Feasibility study of mitigation and suppression strategies for controlling COVID- 19 outbreaks in London and Wuhan
AU - Yang, Po
AU - Qi, Jun
AU - Zhang, Shuhao
AU - Wang, Xulong
AU - Bi, Gaoshan
AU - Yang, Yun
AU - Sheng, Bin
AU - Yang, Geng
N1 - Funding Information:
This work has been supported by WorldWide Universities Network Special Grant Scheme at University of Sheffield, in part by the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems under Grant No: GZKF-201802, in part by the the National Natural Science Foundation of China under Grant No: 61876166 and 61663046.
Publisher Copyright:
© 2020 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/8
Y1 - 2020/8
N2 - Recent outbreaks of coronavirus disease 2019 (COVID-19) has led a global pandemic cross the world. Most countries took two main interventions: suppression like immediate lockdown cities at epicenter or mitigation that slows down but not stopping epidemic for reducing peak healthcare demand. Both strategies have their apparent merits and limitations; it becomes extremely hard to conduct one intervention as the most feasible way to all countries. Targeting at this problem, this paper conducted a feasibility study by defining a mathematical model named SEMCR, it extended traditional SEIR (Susceptible-ExposedInfectious-Recovered) model by adding two key features: a direct connection between Exposed and Recovered populations, and separating infections into mild and critical cases. It defined parameters to classify two stages of COVID-19 control: active contain by isolation of cases and contacts, passive contain by suppression or mitigation. The model was fitted and evaluated with public dataset containing daily number of confirmed active cases including Wuhan and London during January 2020 and March 2020. The simulated results showed that 1) Immediate suppression taken in Wuhan significantly reduced the total exposed and infectious populations, but it has to be consistently maintained at least 90 days (by the middle of April 2020). Without taking this intervention, we predict the number of infections would have been 73 folders higher by the middle of April 2020. Its success requires efficient government initiatives and effective collaborative governance for mobilizing of corporate resources to provide essential goods. This mode may be not suitable to other countries without efficient collaborative governance and sufficient health resources. 2) In London, it is possible to take a hybrid intervention of suppression and mitigation for every 2 or 3 weeks over a longer period to balance the total infections and economic loss. While the total infectious populations in this scenario would be possibly 2 times than the one taking suppression, economic loss and recovery of London would be less affected. 3) Both in Wuhan and London cases, one important issue of fitting practical data was that there were a portion (probably 62.9% in Wuhan) of self-recovered populations that were asymptomatic or mild symptomatic. This finding has been recently confirmed by other studies that the seroprevalence in Wuhan varied between 3.2% and 3.8% in different sub-regions. It highlights that the epidemic is far from coming to an end by means of herd immunity. Early release of intervention intensity potentially increased a risk of the second outbreak.
AB - Recent outbreaks of coronavirus disease 2019 (COVID-19) has led a global pandemic cross the world. Most countries took two main interventions: suppression like immediate lockdown cities at epicenter or mitigation that slows down but not stopping epidemic for reducing peak healthcare demand. Both strategies have their apparent merits and limitations; it becomes extremely hard to conduct one intervention as the most feasible way to all countries. Targeting at this problem, this paper conducted a feasibility study by defining a mathematical model named SEMCR, it extended traditional SEIR (Susceptible-ExposedInfectious-Recovered) model by adding two key features: a direct connection between Exposed and Recovered populations, and separating infections into mild and critical cases. It defined parameters to classify two stages of COVID-19 control: active contain by isolation of cases and contacts, passive contain by suppression or mitigation. The model was fitted and evaluated with public dataset containing daily number of confirmed active cases including Wuhan and London during January 2020 and March 2020. The simulated results showed that 1) Immediate suppression taken in Wuhan significantly reduced the total exposed and infectious populations, but it has to be consistently maintained at least 90 days (by the middle of April 2020). Without taking this intervention, we predict the number of infections would have been 73 folders higher by the middle of April 2020. Its success requires efficient government initiatives and effective collaborative governance for mobilizing of corporate resources to provide essential goods. This mode may be not suitable to other countries without efficient collaborative governance and sufficient health resources. 2) In London, it is possible to take a hybrid intervention of suppression and mitigation for every 2 or 3 weeks over a longer period to balance the total infections and economic loss. While the total infectious populations in this scenario would be possibly 2 times than the one taking suppression, economic loss and recovery of London would be less affected. 3) Both in Wuhan and London cases, one important issue of fitting practical data was that there were a portion (probably 62.9% in Wuhan) of self-recovered populations that were asymptomatic or mild symptomatic. This finding has been recently confirmed by other studies that the seroprevalence in Wuhan varied between 3.2% and 3.8% in different sub-regions. It highlights that the epidemic is far from coming to an end by means of herd immunity. Early release of intervention intensity potentially increased a risk of the second outbreak.
UR - http://www.scopus.com/inward/record.url?scp=85089171278&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0236857
DO - 10.1371/journal.pone.0236857
M3 - Article
C2 - 32760081
AN - SCOPUS:85089171278
SN - 1932-6203
VL - 15
JO - PLoS ONE
JF - PLoS ONE
IS - 8 August
M1 - e0236857
ER -