TY - JOUR
T1 - Extremes of standard multifractional Brownian motion
AU - Bai, Long
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/4
Y1 - 2020/4
N2 - Let SMBH(t),t∈(0,∞) be a standard multifractional Brownian motion(smBm), where H(t)∈(0,1) is a function of t. In this paper we derive the exact asymptotics of Psupt∈[T1,T2]SMBH(t)>u,u→∞for constants T1,T2≥0 and several forms of H(t).
AB - Let SMBH(t),t∈(0,∞) be a standard multifractional Brownian motion(smBm), where H(t)∈(0,1) is a function of t. In this paper we derive the exact asymptotics of Psupt∈[T1,T2]SMBH(t)>u,u→∞for constants T1,T2≥0 and several forms of H(t).
KW - Exact asymptotics
KW - Multifractional Brownian motion
KW - Pickands constants
KW - Supremum
UR - http://www.scopus.com/inward/record.url?scp=85077746598&partnerID=8YFLogxK
U2 - 10.1016/j.spl.2019.108697
DO - 10.1016/j.spl.2019.108697
M3 - Article
AN - SCOPUS:85077746598
SN - 0167-7152
VL - 159
JO - Statistics and Probability Letters
JF - Statistics and Probability Letters
M1 - 108697
ER -