TY - JOUR
T1 - Expression profiles of urbilaterian genes uniquely shared between honey bee and vertebrates
AU - Matsui, Toshiaki
AU - Yamamoto, Toshiyuki
AU - Wyder, Stefan
AU - Zdobnov, Evgeny M.
AU - Kadowaki, Tatsuhiko
N1 - Funding Information:
This study was supported by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to TK, and Swiss National Science Foundation grant SNF 3100A0-112588/1 to EMZ.
PY - 2009/1/12
Y1 - 2009/1/12
N2 - Background: Large-scale comparison of metazoan genomes has revealed that a significant fraction of genes of the last common ancestor of Bilateria (Urbilateria) is lost in each animal lineage. This event could be one of the underlying mechanisms involved in generating metazoan diversity. However, the present functions of these ancient genes have not been addressed extensively. To understand the functions and evolutionary mechanisms of such ancient Urbilaterian genes, we carried out comprehensive expression profile analysis of genes shared between vertebrates and honey bees but not with the other sequenced ecdysozoan genomes (honey bee-vertebrate specific, HVS genes) as a model. Results: We identified 30 honey bee and 55 mouse HVS genes. Many HVS genes exhibited tissue-selective expression patterns; intriguingly, the expression of 60% of honey bee HVS genes was found to be brain enriched, and 24% of mouse HVS genes were highly expressed in either or both the brain and testis. Moreover, a minimum of 38% of mouse HVS genes demonstrated neuron-enriched expression patterns, and 62% of them exhibited expression in selective brain areas, particularly the forebrain and cerebellum. Furthermore, gene ontology (GO) analysis of HVS genes predicted that 35% of genes are associated with DNA transcription and RNA processing. Conclusion: These results suggest that HVS genes include genes that are biased towards expression in the brain and gonads. They also demonstrate that at least some of Urbilaterian genes retained in the specific animal lineage may be selectively maintained to support the species-specific phenotypes.
AB - Background: Large-scale comparison of metazoan genomes has revealed that a significant fraction of genes of the last common ancestor of Bilateria (Urbilateria) is lost in each animal lineage. This event could be one of the underlying mechanisms involved in generating metazoan diversity. However, the present functions of these ancient genes have not been addressed extensively. To understand the functions and evolutionary mechanisms of such ancient Urbilaterian genes, we carried out comprehensive expression profile analysis of genes shared between vertebrates and honey bees but not with the other sequenced ecdysozoan genomes (honey bee-vertebrate specific, HVS genes) as a model. Results: We identified 30 honey bee and 55 mouse HVS genes. Many HVS genes exhibited tissue-selective expression patterns; intriguingly, the expression of 60% of honey bee HVS genes was found to be brain enriched, and 24% of mouse HVS genes were highly expressed in either or both the brain and testis. Moreover, a minimum of 38% of mouse HVS genes demonstrated neuron-enriched expression patterns, and 62% of them exhibited expression in selective brain areas, particularly the forebrain and cerebellum. Furthermore, gene ontology (GO) analysis of HVS genes predicted that 35% of genes are associated with DNA transcription and RNA processing. Conclusion: These results suggest that HVS genes include genes that are biased towards expression in the brain and gonads. They also demonstrate that at least some of Urbilaterian genes retained in the specific animal lineage may be selectively maintained to support the species-specific phenotypes.
UR - http://www.scopus.com/inward/record.url?scp=62749179751&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-10-17
DO - 10.1186/1471-2164-10-17
M3 - Article
C2 - 19138430
AN - SCOPUS:62749179751
SN - 1471-2164
VL - 10
JO - BMC Genomics
JF - BMC Genomics
M1 - 17
ER -