TY - GEN
T1 - Evolutionary combinatorial optimization for recursive supervised learning with clustering
AU - Ramanathan, Kiruthika
AU - Guan, Sheng Uei
PY - 2007
Y1 - 2007
N2 - The idea of using a team of weak learners to learn a dataset is a successful one in literature. In this paper, we explore a recursive incremental approach to ensemble learning. In this paper, patterns are clustered according to the output space of the problem, i.e., natural clusters are formed based on patterns belonging to each class. A combinatorial optimization problem is therefore formed, which is solved using evolutionary algorithms. The evolutionary algorithms identify the "easy" and the "difficult" clusters in the system. The removal of the easy patterns then gives way to the focused learning of the more complicated patterns. Incrementally, neural networks are added to the ensemble to focus on solving successively difficult examples. The problem therefore becomes recursively simpler. Over fitting is overcome by using a set of validation patterns along with a pattern distributor. An algorithm is also proposed to use the pattern distributor to determine the optimal number of recursions and hence the optimal number of weak learners for the problem. In this paper, we show that the generalization accuracy of the proposed algorithm is always better than that of the underlying weak learner. Empirical studies show generally good performance when compared to other state-of-the-art methods.
AB - The idea of using a team of weak learners to learn a dataset is a successful one in literature. In this paper, we explore a recursive incremental approach to ensemble learning. In this paper, patterns are clustered according to the output space of the problem, i.e., natural clusters are formed based on patterns belonging to each class. A combinatorial optimization problem is therefore formed, which is solved using evolutionary algorithms. The evolutionary algorithms identify the "easy" and the "difficult" clusters in the system. The removal of the easy patterns then gives way to the focused learning of the more complicated patterns. Incrementally, neural networks are added to the ensemble to focus on solving successively difficult examples. The problem therefore becomes recursively simpler. Over fitting is overcome by using a set of validation patterns along with a pattern distributor. An algorithm is also proposed to use the pattern distributor to determine the optimal number of recursions and hence the optimal number of weak learners for the problem. In this paper, we show that the generalization accuracy of the proposed algorithm is always better than that of the underlying weak learner. Empirical studies show generally good performance when compared to other state-of-the-art methods.
UR - http://www.scopus.com/inward/record.url?scp=79955268236&partnerID=8YFLogxK
U2 - 10.1109/CEC.2007.4424602
DO - 10.1109/CEC.2007.4424602
M3 - Conference Proceeding
AN - SCOPUS:79955268236
SN - 1424413400
SN - 9781424413409
T3 - 2007 IEEE Congress on Evolutionary Computation, CEC 2007
SP - 1168
EP - 1174
BT - 2007 IEEE Congress on Evolutionary Computation, CEC 2007
T2 - 2007 IEEE Congress on Evolutionary Computation, CEC 2007
Y2 - 25 September 2007 through 28 September 2007
ER -