TY - JOUR
T1 - Estimate of periods on Hirzebruch–Zagier cycles
AU - Su, Feng
N1 - Publisher Copyright:
© 2021 Elsevier Inc.
PY - 2021/7
Y1 - 2021/7
N2 - We study the period integrals of Maass forms restricted to Hirzebruch–Zagier cycles of Hilbert surfaces. In particular, we shall prove an upper bound for such integrals with respect to Laplace eigenvalues of Maass forms. In a special case, this leads to an upper bound for certain special L-values.
AB - We study the period integrals of Maass forms restricted to Hirzebruch–Zagier cycles of Hilbert surfaces. In particular, we shall prove an upper bound for such integrals with respect to Laplace eigenvalues of Maass forms. In a special case, this leads to an upper bound for certain special L-values.
KW - Hilbert surface
KW - Hirzebruch-Zagier cycle
KW - L-values
KW - Maass forms
KW - Period
UR - http://www.scopus.com/inward/record.url?scp=85101501571&partnerID=8YFLogxK
U2 - 10.1016/j.jnt.2021.01.023
DO - 10.1016/j.jnt.2021.01.023
M3 - Article
AN - SCOPUS:85101501571
SN - 0022-314X
VL - 224
SP - 50
EP - 66
JO - Journal of Number Theory
JF - Journal of Number Theory
ER -