Abstract
Mesoporous titanium dioxide (TiO2) hollow nanofibers (HNFs) were successfully prepared by a facile electrospinning and calcination method. Techniques such as X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to characterize TiO2 fibers. It was revealed that TiO2 crystals with an appropriate anatase fraction (71.58%) were grown and a tubular mesoporous structure was formed with a high specific surface area. Photodecomposition of methyl orange (MO) solution showed that TiO2 HNFs exhibited much higher photocatalytic activity than corresponding TiO2 nanofibers (NFs) and loose-structured nanofibers (LNFs). The significant enhancement of photocatalytic activity was attributed to both the sufficient growth of active anatase phase primarily and a tubular mesoporous nature of TiO2 HNFs.
Original language | English |
---|---|
Journal | Functional Materials Letters |
Volume | 12 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2019 |
Externally published | Yes |