Energy dissipation during impact of an agglomerate composed of autoadhesive elastic-plastic particles

Lianfeng David Liu*, Colin Thornton, Stephen James Shaw

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

Abstract

Discrete Element Method is used to simulate the impact of agglomerates consisting of autoadhesive, elastic-plastic primary particles. In order to explain the phenomenon that the elastic agglomerate fractures but the elastic-plastic agglomerate disintegrates adjacent to the impact site for the same impact velocity, we increase the impact velocity and lower the yield strength of the constituent particles of the agglomerate. We find that increasing the impact velocity can lead to the increased number of yielded contacts, and cause the elastic-plastic agglomerate to disintegrate faster. Mostly importantly, the energy dissipation process for the elastic-plastic agglomerate impact has been investigated together with the evolutions of the yielding contacts, and evolutions of velocity during impact.

Original languageEnglish
Title of host publicationProceedings of the 7th International Conference on Discrete Element Methods
EditorsXikui Li, Yuntian Feng, Graham Mustoe
PublisherSpringer Science and Business Media, LLC
Pages101-107
Number of pages7
ISBN (Print)9789811019258
DOIs
Publication statusPublished - 2017
Event7th International Conference on Discrete Element Methods, DEM7 2016 - Dalian, China
Duration: 1 Aug 20164 Aug 2016

Publication series

NameSpringer Proceedings in Physics
Volume188
ISSN (Print)0930-8989
ISSN (Electronic)1867-4941

Conference

Conference7th International Conference on Discrete Element Methods, DEM7 2016
Country/TerritoryChina
CityDalian
Period1/08/164/08/16

Cite this