EgPDE-Net: Building Continuous Neural Networks for Time Series Prediction With Exogenous Variables

Penglei Gao, Xi Yang, Rui Zhang, Ping Guo, John Y. Goulermas, Kaizhu Huang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

While exogenous variables have a major impact on performance improvement in time series analysis, interseries correlation and time dependence among them are rarely considered in the present continuous methods. The dynamical systems of multivariate time series could be modeled with complex unknown partial differential equations (PDEs) which play a prominent role in many disciplines of science and engineering. In this article, we propose a continuous-time model for arbitrary-step prediction to learn an unknown PDE system in multivariate time series whose governing equations are parameterized by self-attention and gated recurrent neural networks. The proposed model, exogenous-guided PDE network (EgPDE-Net), takes account of the relationships among the exogenous variables and their effects on the target series. Importantly, the model can be reduced into a regularized ordinary differential equation (ODE) problem with specially designed regularization guidance, which makes the PDE problem tractable to obtain numerical solutions and feasible to predict multiple future values of the target series at arbitrary time points. Extensive experiments demonstrate that our proposed model could achieve competitive accuracy over strong baselines: on average, it outperforms the best baseline by reducing 9.85% on RMSE and 13.98% on MAE for arbitrary-step prediction.

Original languageEnglish
Pages (from-to)5381-5393
Number of pages13
JournalIEEE Transactions on Cybernetics
Volume54
Issue number9
DOIs
Publication statusPublished - 28 Feb 2024

Keywords

  • Arbitrary-step prediction
  • continuous time
  • partial differential equation (PDE)
  • time series analysis

Fingerprint

Dive into the research topics of 'EgPDE-Net: Building Continuous Neural Networks for Time Series Prediction With Exogenous Variables'. Together they form a unique fingerprint.

Cite this