TY - JOUR
T1 - EgPDE-Net
T2 - Building Continuous Neural Networks for Time Series Prediction With Exogenous Variables
AU - Gao, Penglei
AU - Yang, Xi
AU - Zhang, Rui
AU - Guo, Ping
AU - Goulermas, John Y.
AU - Huang, Kaizhu
N1 - Publisher Copyright:
IEEE
PY - 2024/2/28
Y1 - 2024/2/28
N2 - While exogenous variables have a major impact on performance improvement in time series analysis, interseries correlation and time dependence among them are rarely considered in the present continuous methods. The dynamical systems of multivariate time series could be modeled with complex unknown partial differential equations (PDEs) which play a prominent role in many disciplines of science and engineering. In this article, we propose a continuous-time model for arbitrary-step prediction to learn an unknown PDE system in multivariate time series whose governing equations are parameterized by self-attention and gated recurrent neural networks. The proposed model, exogenous-guided PDE network (EgPDE-Net), takes account of the relationships among the exogenous variables and their effects on the target series. Importantly, the model can be reduced into a regularized ordinary differential equation (ODE) problem with specially designed regularization guidance, which makes the PDE problem tractable to obtain numerical solutions and feasible to predict multiple future values of the target series at arbitrary time points. Extensive experiments demonstrate that our proposed model could achieve competitive accuracy over strong baselines: on average, it outperforms the best baseline by reducing 9.85% on RMSE and 13.98% on MAE for arbitrary-step prediction.
AB - While exogenous variables have a major impact on performance improvement in time series analysis, interseries correlation and time dependence among them are rarely considered in the present continuous methods. The dynamical systems of multivariate time series could be modeled with complex unknown partial differential equations (PDEs) which play a prominent role in many disciplines of science and engineering. In this article, we propose a continuous-time model for arbitrary-step prediction to learn an unknown PDE system in multivariate time series whose governing equations are parameterized by self-attention and gated recurrent neural networks. The proposed model, exogenous-guided PDE network (EgPDE-Net), takes account of the relationships among the exogenous variables and their effects on the target series. Importantly, the model can be reduced into a regularized ordinary differential equation (ODE) problem with specially designed regularization guidance, which makes the PDE problem tractable to obtain numerical solutions and feasible to predict multiple future values of the target series at arbitrary time points. Extensive experiments demonstrate that our proposed model could achieve competitive accuracy over strong baselines: on average, it outperforms the best baseline by reducing 9.85% on RMSE and 13.98% on MAE for arbitrary-step prediction.
KW - Arbitrary-step prediction
KW - continuous time
KW - partial differential equation (PDE)
KW - time series analysis
UR - http://www.scopus.com/inward/record.url?scp=85187014741&partnerID=8YFLogxK
U2 - 10.1109/TCYB.2024.3364186
DO - 10.1109/TCYB.2024.3364186
M3 - Article
C2 - 38416628
AN - SCOPUS:85187014741
SN - 2168-2267
VL - 54
SP - 5381
EP - 5393
JO - IEEE Transactions on Cybernetics
JF - IEEE Transactions on Cybernetics
IS - 9
ER -