TY - JOUR
T1 - Effect of soil type on tipping point hydrological requirements for Axonopus compressus grass under extreme drought stress
AU - Ganesan, Suriya Prakash
AU - Bordoloi, Sanandam
AU - Cai, Weiling
AU - Garg, Ankit
AU - Sekharan, Sreedeep
AU - Sahoo, Lingaraj
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/11/25
Y1 - 2024/11/25
N2 - Critical soil suctions (threshold, tipping point, and permanent wilting) corresponding to initial drought response, near-death stage, and complete mortality, respectively; is essential for formulating irrigation schemes of vegetation grown in compacted soil under drought conditions. The effect of soil types on these critical soil suctions are unexplored and is crucial in understanding the soil-specific plant water functions. This study aims to establish the drought response of Axonopus compressus (grass), based on stomatal conductance (gs) and chlorophyll fluorescence parameters (CI) grown in different soil types. A. compressus were grown in six soil types (2 coarse-grained and 4 fine-grained soils) for 8 weeks, followed by continued drought condition. The gs and CI were monitored along with soil suction and moisture content. Both leaf and root growth were observed to be higher in coarse-grained soils than fine-grained soils, even though the water retention of the coarse-grained soils were comparatively less. Drought stress initiation in plants was captured by ψthreshold from the CI (especially in fine-grained soils) before the gs response. The three critical soil suctions estimated from the correlation between CI and ψ were found to be increasing with higher soil clay fraction. Corresponding plant available water contents (based on v/v volumetric water content) with each of three critical soil suctions were found to be dependent on the relative growth of canopy to root growth that occurred in different soil medias. Especially, plant available water in ‘tipping suction’ was dependent on the soil clay fraction (i.e., higher fraction could restrict root water uptake) and is presented with a simple empirical correlation for A. compressus.
AB - Critical soil suctions (threshold, tipping point, and permanent wilting) corresponding to initial drought response, near-death stage, and complete mortality, respectively; is essential for formulating irrigation schemes of vegetation grown in compacted soil under drought conditions. The effect of soil types on these critical soil suctions are unexplored and is crucial in understanding the soil-specific plant water functions. This study aims to establish the drought response of Axonopus compressus (grass), based on stomatal conductance (gs) and chlorophyll fluorescence parameters (CI) grown in different soil types. A. compressus were grown in six soil types (2 coarse-grained and 4 fine-grained soils) for 8 weeks, followed by continued drought condition. The gs and CI were monitored along with soil suction and moisture content. Both leaf and root growth were observed to be higher in coarse-grained soils than fine-grained soils, even though the water retention of the coarse-grained soils were comparatively less. Drought stress initiation in plants was captured by ψthreshold from the CI (especially in fine-grained soils) before the gs response. The three critical soil suctions estimated from the correlation between CI and ψ were found to be increasing with higher soil clay fraction. Corresponding plant available water contents (based on v/v volumetric water content) with each of three critical soil suctions were found to be dependent on the relative growth of canopy to root growth that occurred in different soil medias. Especially, plant available water in ‘tipping suction’ was dependent on the soil clay fraction (i.e., higher fraction could restrict root water uptake) and is presented with a simple empirical correlation for A. compressus.
KW - Chlorophyll fluorescence
KW - Critical soil suction
KW - Drought
KW - Ecological restoration
KW - Precision irrigation
KW - Stomatal conductance
UR - http://www.scopus.com/inward/record.url?scp=85203240678&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2024.175928
DO - 10.1016/j.scitotenv.2024.175928
M3 - Article
C2 - 39226953
AN - SCOPUS:85203240678
SN - 0048-9697
VL - 953
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 175928
ER -