EAYv3-CF<inline-formula><tex-math notation="LaTeX">$C^{3}$</tex-math></inline-formula> Ensemble Learning With Attention-Based Yv3 Combined With CF<inline-formula><tex-math notation="LaTeX">$C^{3}$</tex-math></inline-formula> Loss for Obscenity Detection

Sonali Samal, Yu Dong Zhang, Juan Manuel Gorriz Saez, Shui Hua Wang, Bunil Kumar Balabantaray, Rajashree Nayak

Research output: Contribution to journalArticlepeer-review

Abstract

A substantial amount of pornographic material is unregulated and readily accessible to all, which triggers cybercrime. Hence, the automatic detection and filtering of obscene content have become vital. Due to the sensitive nature of the data, a false-positive misclassification can affect the dignity of a person. So, we choose a detection algorithm that trains the model with annotated obscene images to specifically extract obscene features. We introduced a YOLOv3 ensemble learning method that integrates the sandglass block and convolutional block attention module (CBAM) into feature extraction. A diversified dataset is generated by using Pix-2-Pix GAN-based augmentation followed by extensive manual annotations to train this algorithm. The augmentation technique using illumination shifts and background color variations enables our model to reduce the misclassifications. The proposed design is optimized by using <inline-formula><tex-math notation="LaTeX">$CFC^{3}$</tex-math></inline-formula> loss, a combination of contrastive feature loss, and YOLOv3 default loss. We abbreviated this model as Ensemble learning with Attention-based YOLOv3 combined with <inline-formula><tex-math notation="LaTeX">$CFC^{3}$</tex-math></inline-formula> loss (EAYv3-CF}}<inline-formula><tex-math notation="LaTeX">$C^{3}$</tex-math></inline-formula>). EAYv3-CF<inline-formula><tex-math notation="LaTeX">$C^{3}$</tex-math></inline-formula> achieved an accuracy of <inline-formula><tex-math notation="LaTeX">$98.85\pm 1.00\%$</tex-math></inline-formula>, a precision of <inline-formula><tex-math notation="LaTeX">$98.70\pm 1.00\%$</tex-math></inline-formula>, a JI score of <inline-formula><tex-math notation="LaTeX">$97.73\pm 1.00\%$</tex-math></inline-formula>, an FPR of <inline-formula><tex-math notation="LaTeX">$0.013\pm 1.00\%$</tex-math></inline-formula>, an FM value of <inline-formula><tex-math notation="LaTeX">$98.85\pm 1.00\%$</tex-math></inline-formula>, and MCC value of <inline-formula><tex-math notation="LaTeX">$97.70\pm 1.30\%$</tex-math></inline-formula> with a better performance as compared to the state-of-the-art techniques.

Original languageEnglish
Pages (from-to)1-5
Number of pages5
JournalIEEE Transactions on Emerging Topics in Computational Intelligence
DOIs
Publication statusAccepted/In press - 2023
Externally publishedYes

Keywords

  • Computational intelligence
  • Computational modeling
  • Convolution
  • Ensemble learning
  • Feature extraction
  • Mathematical models
  • Obscene detection
  • Training
  • YOLOv3
  • attention learning
  • deep learning
  • ensemble learning
  • feature loss

Fingerprint

Dive into the research topics of 'EAYv3-CF<inline-formula><tex-math notation="LaTeX">$C^{3}$</tex-math></inline-formula> Ensemble Learning With Attention-Based Yv3 Combined With CF<inline-formula><tex-math notation="LaTeX">$C^{3}$</tex-math></inline-formula> Loss for Obscenity Detection'. Together they form a unique fingerprint.

Cite this