Dynamical exploitation space reduction in particle swarm optimization for solving large scale problems

Shi Cheng*, Yuhui Shi, Quande Qin

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

20 Citations (Scopus)

Abstract

Particle swarm optimization (PSO) may lose search efficiency when the problem's dimension increases to large scale. For high dimensional search space, an algorithm may not be easy to locate at regions which contain good solutions. The exploitation ability is also reduced due to high dimensional search space. The "No Free Lunch" theorem implies that we can make better algorithm if an algorithm knows the information of the problem. Algorithms should have an ability of learning to solve different problems, in other words, algorithms can adaptively change to suit the landscape of problems. In this paper, the strategy of dynamical exploitation space reduction is utilized to learn problems' landscapes. While at the same time, partial re-initialization strategy is utilized to enhance the algorithm's exploration ability. Experimental results show that a PSO with these two strategies has better performance than the standard PSO in large scale problems. Population diversities of variant PSOs, which include position diversity, velocity diversity and cognitive diversity, are discussed and analyzed. From diversity analysis, we can conclude that an algorithm's exploitation ability can be enhanced by exploitation space reduction strategy.

Original languageEnglish
Title of host publication2012 IEEE Congress on Evolutionary Computation, CEC 2012
DOIs
Publication statusPublished - 2012
Event2012 IEEE Congress on Evolutionary Computation, CEC 2012 - Brisbane, QLD, Australia
Duration: 10 Jun 201215 Jun 2012

Publication series

Name2012 IEEE Congress on Evolutionary Computation, CEC 2012

Conference

Conference2012 IEEE Congress on Evolutionary Computation, CEC 2012
Country/TerritoryAustralia
CityBrisbane, QLD
Period10/06/1215/06/12

Fingerprint

Dive into the research topics of 'Dynamical exploitation space reduction in particle swarm optimization for solving large scale problems'. Together they form a unique fingerprint.

Cite this