TY - JOUR
T1 - Dose dependent x-ray luminescence in MgF2
T2 - Eu2+, Mn2+ phosphors
AU - Chen, Wei
AU - Westcott, Sarah L.
AU - Wang, Shaopeng
AU - Liu, Yuanfang
PY - 2008
Y1 - 2008
N2 - In Mg F2: Mn2+, Eu2+ phosphors, the x-ray excited luminescence from Eu2+ is decreased while the emission from Mn2+ is increased in intensity with the increase of x-ray dose. In Mg F2: Mn2+, the luminescence is also increased, and in MgF2: Eu2+, the emission of Eu2+ is also decreased in intensity with the increase of x-ray dose. However, the intensity changes with x-ray dose in the singly doped Mg F2: Mn2+ and MgF2: Eu2+ phosphors are much less than those in the doubly doped Mg F2: Mn2+, Eu2+ phosphors. The increase of Mn2+ emission in intensity is likely due to the breakdown of the forbidden transition by the defects created by x-ray irradiation. No conversion of Eu2+ ions to Eu3+ ions was observed in MgF2: Eu 2+ phosphors during x-ray irradiation. The decrease of Eu2+ emission in intensity in Mg F2: Mn2+, Eu2+ must be closely related to the interaction and the energy transfer to Mn2+ ions. The phenomenon observed is potentially interesting for the practical applications for radiation detection, as utilizing the ratio of the two emissions from Mn2+ and Eu2+ for radiation detection is more sensitive and more reliable than using emission intensity change only.
AB - In Mg F2: Mn2+, Eu2+ phosphors, the x-ray excited luminescence from Eu2+ is decreased while the emission from Mn2+ is increased in intensity with the increase of x-ray dose. In Mg F2: Mn2+, the luminescence is also increased, and in MgF2: Eu2+, the emission of Eu2+ is also decreased in intensity with the increase of x-ray dose. However, the intensity changes with x-ray dose in the singly doped Mg F2: Mn2+ and MgF2: Eu2+ phosphors are much less than those in the doubly doped Mg F2: Mn2+, Eu2+ phosphors. The increase of Mn2+ emission in intensity is likely due to the breakdown of the forbidden transition by the defects created by x-ray irradiation. No conversion of Eu2+ ions to Eu3+ ions was observed in MgF2: Eu 2+ phosphors during x-ray irradiation. The decrease of Eu2+ emission in intensity in Mg F2: Mn2+, Eu2+ must be closely related to the interaction and the energy transfer to Mn2+ ions. The phenomenon observed is potentially interesting for the practical applications for radiation detection, as utilizing the ratio of the two emissions from Mn2+ and Eu2+ for radiation detection is more sensitive and more reliable than using emission intensity change only.
UR - http://www.scopus.com/inward/record.url?scp=45149112501&partnerID=8YFLogxK
U2 - 10.1063/1.2937084
DO - 10.1063/1.2937084
M3 - Article
AN - SCOPUS:45149112501
SN - 0021-8979
VL - 103
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 11
M1 - 113103
ER -