Domain Adaption for Facial Expression Recognition

Jun Tong Liu, Fang Yu Wu, Wen Jin Lu, Bai Ling Zhang

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

1 Citation (Scopus)

Abstract

Facial expression recognition (FER) is a task that recognizes human emotions from their facial expressions. Owing to the lack of large datasets, a FER system is difficult to design, especially for real world environment. In this paper, we propose a new dataset augmentation method for FER and the corresponding training strategy by using similarity preserving generative adversarial network (SPGAN). By borrowing the idea from person re-ID field, we consider dataset augmentation as a domain adaptation task. The SPGAN is first trained on a lab condition dataset and a real world condition dataset to generate domain adapted images, and then CNN models are subsequently trained on the domain adapted images. We test our models on the RAF-DB and SFEW 2.0 datasets to show the improvement when compared it to our baseline. We also report our competitive accuracy when compared it with other state of the art works, which shows promissing results.

Original languageEnglish
Title of host publicationProceedings of 2019 International Conference on Machine Learning and Cybernetics, ICMLC 2019
PublisherIEEE Computer Society
ISBN (Electronic)9781728128160
DOIs
Publication statusPublished - Jul 2019
Event18th International Conference on Machine Learning and Cybernetics, ICMLC 2019 - Kobe, Japan
Duration: 7 Jul 201910 Jul 2019

Publication series

NameProceedings - International Conference on Machine Learning and Cybernetics
Volume2019-July
ISSN (Print)2160-133X
ISSN (Electronic)2160-1348

Conference

Conference18th International Conference on Machine Learning and Cybernetics, ICMLC 2019
Country/TerritoryJapan
CityKobe
Period7/07/1910/07/19

Keywords

  • Deep convolutional neural networks
  • Domain adaption
  • Facial expression recognition
  • Generative adversarial networks

Fingerprint

Dive into the research topics of 'Domain Adaption for Facial Expression Recognition'. Together they form a unique fingerprint.

Cite this