TY - JOUR
T1 - Do we innovate atop giants' shoulders?
AU - Luan, Fushu
AU - Chen, Yang
AU - He, Ming
AU - Park, Donghyun
N1 - Publisher Copyright:
© 2022, Emerald Publishing Limited.
PY - 2022
Y1 - 2022
N2 - Purpose: The main purpose of this paper is to explore whether the nature of innovation is accumulative or radical and to what extent past year accumulation of technology stock can predict future innovation. More importantly, the authors are concerned with whether a change of policy regime or a variance in the quality of technology will moderate the nature of innovation. Design/methodology/approach: The authors examined a dataset of 3.6 million Chinese patents during 1985–2015 and constructed more than 5 million citation pairs across 8 sections and 128 classes to track knowledge spillover across technology fields. The authors used this citation dataset to calculate the technology innovation network. The authors constructed a measure of upstream invention, interacting the pre-existing technology innovation network with historical patent growth in each technology field, and estimated measure's impact on future innovation since 2005. The authors also constructed three sets of metrics – technology dependence, centrality and scientific value – to identify innovation quality and a policy dummy to consider the impact of policy on innovation. Findings: Innovation growth is built upon past year accumulation and technology spillover. Innovation grows faster for technologies that are more central and grows more slowly for more valuable technologies. A pro-innovation and pro-intellectual property right (IPR) policy plays a positive and significant role in driving technical progress. The authors also found that for technologies that have faster access to new information or larger power to control knowledge flow, the upstream and downstream innovation linkage is stronger. However, this linkage is weaker for technologies that are more novel or general. On most occasions, the nature of innovation was less responsive to policy shock. Originality/value: This paper contributes to the debate on the nature of innovation by determining whether upstream innovation has strong predictive power on future innovation. The authors develop the assumption used in the technology spillover literature by considering a time-variant, directional and asymmetric matrix to model technology diffusion. For the first time, the authors answer how the nature of innovation will vary depending on the technology network configurations and policy environment. In addition to contributing to the academic debate, the authors' study has important implications for economic growth and industrial or innovation management policies.
AB - Purpose: The main purpose of this paper is to explore whether the nature of innovation is accumulative or radical and to what extent past year accumulation of technology stock can predict future innovation. More importantly, the authors are concerned with whether a change of policy regime or a variance in the quality of technology will moderate the nature of innovation. Design/methodology/approach: The authors examined a dataset of 3.6 million Chinese patents during 1985–2015 and constructed more than 5 million citation pairs across 8 sections and 128 classes to track knowledge spillover across technology fields. The authors used this citation dataset to calculate the technology innovation network. The authors constructed a measure of upstream invention, interacting the pre-existing technology innovation network with historical patent growth in each technology field, and estimated measure's impact on future innovation since 2005. The authors also constructed three sets of metrics – technology dependence, centrality and scientific value – to identify innovation quality and a policy dummy to consider the impact of policy on innovation. Findings: Innovation growth is built upon past year accumulation and technology spillover. Innovation grows faster for technologies that are more central and grows more slowly for more valuable technologies. A pro-innovation and pro-intellectual property right (IPR) policy plays a positive and significant role in driving technical progress. The authors also found that for technologies that have faster access to new information or larger power to control knowledge flow, the upstream and downstream innovation linkage is stronger. However, this linkage is weaker for technologies that are more novel or general. On most occasions, the nature of innovation was less responsive to policy shock. Originality/value: This paper contributes to the debate on the nature of innovation by determining whether upstream innovation has strong predictive power on future innovation. The authors develop the assumption used in the technology spillover literature by considering a time-variant, directional and asymmetric matrix to model technology diffusion. For the first time, the authors answer how the nature of innovation will vary depending on the technology network configurations and policy environment. In addition to contributing to the academic debate, the authors' study has important implications for economic growth and industrial or innovation management policies.
KW - Innovation
KW - Network analysis
KW - Patent citation
KW - Upstream innovation
UR - http://www.scopus.com/inward/record.url?scp=85144065235&partnerID=8YFLogxK
U2 - 10.1108/EJIM-01-2022-0054
DO - 10.1108/EJIM-01-2022-0054
M3 - Article
AN - SCOPUS:85144065235
SN - 1460-1060
VL - 27
SP - 1403
EP - 1449
JO - European Journal of Innovation Management
JF - European Journal of Innovation Management
IS - 4
ER -