TY - JOUR
T1 - DNA Cryptography and Deep Learning using Genetic Algorithm with NW algorithm for Key Generation
AU - Kalsi, Shruti
AU - Kaur, Harleen
AU - Chang, Victor
N1 - Publisher Copyright:
© 2017, Springer Science+Business Media, LLC.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Cryptography is not only a science of applying complex mathematics and logic to design strong methods to hide data called as encryption, but also to retrieve the original data back, called decryption. The purpose of cryptography is to transmit a message between a sender and receiver such that an eavesdropper is unable to comprehend it. To accomplish this, not only we need a strong algorithm, but a strong key and a strong concept for encryption and decryption process. We have introduced a concept of DNA Deep Learning Cryptography which is defined as a technique of concealing data in terms of DNA sequence and deep learning. In the cryptographic technique, each alphabet of a letter is converted into a different combination of the four bases, namely; Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), which make up the human deoxyribonucleic acid (DNA). Actual implementations with the DNA don’t exceed laboratory level and are expensive. To bring DNA computing on a digital level, easy and effective algorithms are proposed in this paper. In proposed work we have introduced firstly, a method and its implementation for key generation based on the theory of natural selection using Genetic Algorithm with Needleman-Wunsch (NW) algorithm and Secondly, a method for implementation of encryption and decryption based on DNA computing using biological operations Transcription, Translation, DNA Sequencing and Deep Learning.
AB - Cryptography is not only a science of applying complex mathematics and logic to design strong methods to hide data called as encryption, but also to retrieve the original data back, called decryption. The purpose of cryptography is to transmit a message between a sender and receiver such that an eavesdropper is unable to comprehend it. To accomplish this, not only we need a strong algorithm, but a strong key and a strong concept for encryption and decryption process. We have introduced a concept of DNA Deep Learning Cryptography which is defined as a technique of concealing data in terms of DNA sequence and deep learning. In the cryptographic technique, each alphabet of a letter is converted into a different combination of the four bases, namely; Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), which make up the human deoxyribonucleic acid (DNA). Actual implementations with the DNA don’t exceed laboratory level and are expensive. To bring DNA computing on a digital level, easy and effective algorithms are proposed in this paper. In proposed work we have introduced firstly, a method and its implementation for key generation based on the theory of natural selection using Genetic Algorithm with Needleman-Wunsch (NW) algorithm and Secondly, a method for implementation of encryption and decryption based on DNA computing using biological operations Transcription, Translation, DNA Sequencing and Deep Learning.
KW - Cryptography
KW - DNA computing
KW - DNA cryptography
KW - Deep learning
KW - Genetic algorithm
KW - Needleman-Wunsch algorithm (NW) algorithm
UR - http://www.scopus.com/inward/record.url?scp=85037640800&partnerID=8YFLogxK
U2 - 10.1007/s10916-017-0851-z
DO - 10.1007/s10916-017-0851-z
M3 - Article
C2 - 29204890
AN - SCOPUS:85037640800
SN - 0148-5598
VL - 42
JO - Journal of Medical Systems
JF - Journal of Medical Systems
IS - 1
M1 - 17
ER -