TY - JOUR
T1 - Distribution of functional microorganisms and its significance for iron, sulphur, and nitrogen cycles in reservoir sediments
AU - Bai, Shuang
AU - Yang, Meilin
AU - Chen, Zheng
AU - Yang, Ming
AU - Ma, Jing
AU - Chen, Xue Ping
AU - Wang, Fushun
N1 - Publisher Copyright:
© 2021, Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2021/12
Y1 - 2021/12
N2 - The biogeochemical cycles of sulphur (S), iron (Fe) and nitrogen (N) elements play a key role in the reservoir ecosystem. However, the spatial positioning and interrelationship of S, Fe and N cycles in the reservoir sediment profile have not been explored to a greater extent. Here, we measure the gradients of Fe2+, SO42−, NO3−, NH4+, DOC, TC and TN in the pore water of the sediment, and combining the vertical distribution of the functional microorganisms involved in S, Fe and N cyclings in the sediments to determine the redox stratification in the sediment. It is found that the geochemical gradient of S, Fe and N of the reservoir sedimentary column is mainly defined by the redox process involved in the related functional microorganisms. According to the type of electron acceptor, the sediment profile is divided into 3 redox intervals, namely aerobic respiration (0–10 cm), denitrification/iron reduction (10–28 cm) and sulfate reduction (28–32 cm). In the aerobic respiration zone, NH4+ is oxidized by aerobic AOB to NO3− (0–5 cm), and Fe2+ is oxidized by microaerobic FeRB to Fe3+ (3–10 cm). In the denitrification/iron reduction zone, Acinetobacter and Pseudomonas, as the dominant NRB genera, may use nitrate as an electron acceptor to oxidize Fe2+ (11–16 cm). The dominant genera in SOB, such as Sulfururvum, Thiobacillus and Thioalkalispira, may use nitrate as an electron acceptor to oxidize sulfide, leading to SO42− accumulation (14–24 cm). In the sulfate reduction zone, SO42− is reduced by SRB. This study found that functional microorganisms forming comprehensive local ecological structures to adapt to changing geochemical conditions, and which would be potentially important for the degradation and preservation of C and the fate of many nutrients and contaminants in reservoirs.
AB - The biogeochemical cycles of sulphur (S), iron (Fe) and nitrogen (N) elements play a key role in the reservoir ecosystem. However, the spatial positioning and interrelationship of S, Fe and N cycles in the reservoir sediment profile have not been explored to a greater extent. Here, we measure the gradients of Fe2+, SO42−, NO3−, NH4+, DOC, TC and TN in the pore water of the sediment, and combining the vertical distribution of the functional microorganisms involved in S, Fe and N cyclings in the sediments to determine the redox stratification in the sediment. It is found that the geochemical gradient of S, Fe and N of the reservoir sedimentary column is mainly defined by the redox process involved in the related functional microorganisms. According to the type of electron acceptor, the sediment profile is divided into 3 redox intervals, namely aerobic respiration (0–10 cm), denitrification/iron reduction (10–28 cm) and sulfate reduction (28–32 cm). In the aerobic respiration zone, NH4+ is oxidized by aerobic AOB to NO3− (0–5 cm), and Fe2+ is oxidized by microaerobic FeRB to Fe3+ (3–10 cm). In the denitrification/iron reduction zone, Acinetobacter and Pseudomonas, as the dominant NRB genera, may use nitrate as an electron acceptor to oxidize Fe2+ (11–16 cm). The dominant genera in SOB, such as Sulfururvum, Thiobacillus and Thioalkalispira, may use nitrate as an electron acceptor to oxidize sulfide, leading to SO42− accumulation (14–24 cm). In the sulfate reduction zone, SO42− is reduced by SRB. This study found that functional microorganisms forming comprehensive local ecological structures to adapt to changing geochemical conditions, and which would be potentially important for the degradation and preservation of C and the fate of many nutrients and contaminants in reservoirs.
KW - Denitrification
KW - Geochemical cycle
KW - Microbial community
KW - Redox
KW - Reservoir sediment
UR - http://www.scopus.com/inward/record.url?scp=85114630154&partnerID=8YFLogxK
U2 - 10.1007/s11631-021-00492-0
DO - 10.1007/s11631-021-00492-0
M3 - Article
AN - SCOPUS:85114630154
SN - 2096-0956
VL - 40
SP - 961
EP - 972
JO - Acta Geochimica
JF - Acta Geochimica
IS - 6
ER -