TY - JOUR
T1 - Design strategies for mainstream flow channels in large-area PEMFC
T2 - From typical units to large areas
AU - Zhang, Zhuo
AU - Quan, Hong Bing
AU - Cai, Sai Jie
AU - Li, Zheng Dao
AU - Tao, Wen Quan
N1 - Publisher Copyright:
© 2025
PY - 2025/6/15
Y1 - 2025/6/15
N2 - Developing a large-scale flow field is essential for high-power proton exchange membrane fuel cells. A typical small-scale unit should be expanded to create the mainstream zone of a large-area flow field. This study investigated various design strategies for area magnification through numerical analysis. The impacts of channel length, number of channel branches, scaling factor, and channel/rib ratio on cell performance were thoroughly analyzed. An extraction method for concentration loss was devised to evaluate the primary voltage loss, and a contribution factor was determined. It was found that adding channel branches and proportional amplification led to a performance decline of 4.3 % and 42.6 %, respectively. However, extending channel length can slightly improve the PEMFC power density by 0.5 %–3.4 %. All three area magnification methods affect the bulk concentration in the channel, thereby influencing concentration loss. Moreover, proportional amplification and increasing C/R ratio can also deteriorate the mass transport ability from channel to porous electrode. When adjusting the channel length and C/R ratio, concentration loss is emerged as the primary factor driving performance differences, with a contribution factor exceeding 80 %, significantly higher than the other two voltage losses. However, in the case of altering the number of branches and proportional amplification, ohmic or activation loss also plays a crucial role. The performance of large-area fuel cells will be significantly improved if the area amplification strategy is selected reasonably. Among the three area magnification strategies, adding channel branches is suggested, considering both pump loss and performance degradation. For channel lengths exceeding 100 mm, the pump power density increased exponentially (more than eight times), which is unfavorable. Proportional amplification may lead to a substantial decline (>40 %) in cell output performance.
AB - Developing a large-scale flow field is essential for high-power proton exchange membrane fuel cells. A typical small-scale unit should be expanded to create the mainstream zone of a large-area flow field. This study investigated various design strategies for area magnification through numerical analysis. The impacts of channel length, number of channel branches, scaling factor, and channel/rib ratio on cell performance were thoroughly analyzed. An extraction method for concentration loss was devised to evaluate the primary voltage loss, and a contribution factor was determined. It was found that adding channel branches and proportional amplification led to a performance decline of 4.3 % and 42.6 %, respectively. However, extending channel length can slightly improve the PEMFC power density by 0.5 %–3.4 %. All three area magnification methods affect the bulk concentration in the channel, thereby influencing concentration loss. Moreover, proportional amplification and increasing C/R ratio can also deteriorate the mass transport ability from channel to porous electrode. When adjusting the channel length and C/R ratio, concentration loss is emerged as the primary factor driving performance differences, with a contribution factor exceeding 80 %, significantly higher than the other two voltage losses. However, in the case of altering the number of branches and proportional amplification, ohmic or activation loss also plays a crucial role. The performance of large-area fuel cells will be significantly improved if the area amplification strategy is selected reasonably. Among the three area magnification strategies, adding channel branches is suggested, considering both pump loss and performance degradation. For channel lengths exceeding 100 mm, the pump power density increased exponentially (more than eight times), which is unfavorable. Proportional amplification may lead to a substantial decline (>40 %) in cell output performance.
KW - Area magnification
KW - PEMFC
KW - Pump loss
KW - Reactant concentration
KW - Voltage loss
UR - http://www.scopus.com/inward/record.url?scp=86000662586&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2025.125628
DO - 10.1016/j.apenergy.2025.125628
M3 - Article
AN - SCOPUS:86000662586
SN - 0306-2619
VL - 388
JO - Applied Energy
JF - Applied Energy
M1 - 125628
ER -