TY - JOUR
T1 - Constitutive modelling and mechanical properties of cementitious composites incorporating recycled vinyl banner plastics
AU - Bompa, D. V.
AU - Xu, B.
AU - Elghazouli, A. Y.
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2021/3/15
Y1 - 2021/3/15
N2 - This paper describes an experimental study, which has been lacking to date, into the mechanical properties of cementitious composites incorporating granules and fibres from recycled Reinforced PVC (RPVC) banners. A detailed account of over 140 tests on cylindrical, cubic and prismatic samples tested in compression and flexure, with up to 20% replacement of mineral aggregates, is given. Based on the test results, the uniaxial properties of selected recycled materials are examined in conjunction with a detailed characterisation of the RPVC granule size and geometry. Experimental measurements using digital image correlation techniques enable a detailed interpretation of the full constitutive response in terms of compression stress-strain behaviour and flexural stress-crack opening curves, as well as key mechanical parameters such as strength, elastic modulus and fracture energy. It is shown that the mechanical properties decrease proportionally with the amount of RPVC. For each 10% increment of volumetric replacement of mineral aggregates, the compressive strength is halved whilst the flexural strength is reduced by about 30% compared to their conventional counterparts. The reduction in strength is counterbalanced by an improved ductility represented by a favourable post-peak response in compression and an enhanced flexural softening and post-cracking performance. Smaller particles, with a relatively long acicular or triangular geometry, exhibited better behaviour as these acted as fibres with improved bond properties in comparison with intermediate and large size granules. The test results and observations enable the definition of a series of expressions to determine the mechanical properties of cementitious materials incorporating RPVC and other waste plastics. These expressions are then used as a basis for an analytical model for assessing the compressive and tensile stress-strain response of such materials. Validations carried out against the tests undertaken in this study, as well as from previous investigations, indicate that the proposed expressions and the developed constitutive model offer reliable representations for practical application.
AB - This paper describes an experimental study, which has been lacking to date, into the mechanical properties of cementitious composites incorporating granules and fibres from recycled Reinforced PVC (RPVC) banners. A detailed account of over 140 tests on cylindrical, cubic and prismatic samples tested in compression and flexure, with up to 20% replacement of mineral aggregates, is given. Based on the test results, the uniaxial properties of selected recycled materials are examined in conjunction with a detailed characterisation of the RPVC granule size and geometry. Experimental measurements using digital image correlation techniques enable a detailed interpretation of the full constitutive response in terms of compression stress-strain behaviour and flexural stress-crack opening curves, as well as key mechanical parameters such as strength, elastic modulus and fracture energy. It is shown that the mechanical properties decrease proportionally with the amount of RPVC. For each 10% increment of volumetric replacement of mineral aggregates, the compressive strength is halved whilst the flexural strength is reduced by about 30% compared to their conventional counterparts. The reduction in strength is counterbalanced by an improved ductility represented by a favourable post-peak response in compression and an enhanced flexural softening and post-cracking performance. Smaller particles, with a relatively long acicular or triangular geometry, exhibited better behaviour as these acted as fibres with improved bond properties in comparison with intermediate and large size granules. The test results and observations enable the definition of a series of expressions to determine the mechanical properties of cementitious materials incorporating RPVC and other waste plastics. These expressions are then used as a basis for an analytical model for assessing the compressive and tensile stress-strain response of such materials. Validations carried out against the tests undertaken in this study, as well as from previous investigations, indicate that the proposed expressions and the developed constitutive model offer reliable representations for practical application.
KW - Cementitious composites
KW - Constitutive models
KW - Plastic waste
KW - Recycling
KW - Reinforced PVC
UR - http://www.scopus.com/inward/record.url?scp=85098975213&partnerID=8YFLogxK
U2 - 10.1016/j.conbuildmat.2020.122159
DO - 10.1016/j.conbuildmat.2020.122159
M3 - Article
AN - SCOPUS:85098975213
SN - 0950-0618
VL - 275
JO - Construction and Building Materials
JF - Construction and Building Materials
M1 - 122159
ER -