Congruence skein relations for colored HOMFLY-PT invariants

Qingtao Chen, K. Liu, P. Peng, S. Zhu

Research output: Contribution to journalArticlepeer-review

Abstract

The original HOMFLY-PT polynomials can be fully determined by a very simple rule, the skein relation, while the colored HOMFLY-PT invariants (2 variables) of
links are notoriously hard to compute. Inspired by the large N duality connecting Chern–Simons gauge theory and topological string theory, the Labastida-Mariño–Ooguri–Vafa (LMOV) conjecture for links (or framed links) predicts integrality, pole order structure and symmetric property for the colored HOMFLY-PT invariants. By studying the LMOV conjecture for framed links, we uncover certain congruence skein relations for the (reformulated) colored HOMFLY-PT invariants. Although these congruence skein relations still can not fully determine the colored HOMFLY-PT invariants, they provide a strong pattern for the colored HOMFLY-PT invariants, which possibly could pave a way for people to understand the very mysterious nature of the colored HOMFLY-PT invariants. We prove that these congruence skein relations hold in many different situations.
Finally, we discuss the applications of the congruence skein relations in framed
LMOV conjecture.
Original languageEnglish
Pages (from-to)683-729
Number of pages47
JournalCommunications in Mathematical Physics
Volume400
Issue number2
Publication statusPublished - Jun 2023

Fingerprint

Dive into the research topics of 'Congruence skein relations for colored HOMFLY-PT invariants'. Together they form a unique fingerprint.

Cite this