TY - JOUR
T1 - Compatibilization Efficiency of Graft Copolymers in Incompatible Polymer Blends
T2 - Dissipative Particle Dynamics Simulations Combined with Machine Learning
AU - Zhou, Tianhang
AU - Qiu, Dejian
AU - Wu, Zhenghao
AU - Alberti, Simon A.N.
AU - Bag, Saientan
AU - Schneider, Jurek
AU - Meyer, Jan
AU - Gámez, José A.
AU - Gieler, Mandy
AU - Reithmeier, Marina
AU - Seidel, Andreas
AU - Müller-Plathe, Florian
N1 - Publisher Copyright:
© 2022 American Chemical Society.
PY - 2022/9/13
Y1 - 2022/9/13
N2 - Graft copolymers are widely used as compatibilizers in homopolymer blends. Computational modeling techniques for predicting the compatibilization efficiency of such polymeric materials have substantially accelerated their development. We employ an efficient particle-based simulation method, namely dissipative particle dynamics (DPD), to systematically investigate the compatibilization efficiency of graft copolymers for a wide range of design parameters such as polymer chemistry, backbone and side chain lengths, and the number of side chains. We find that regular graft copolymers (with regular side chain distribution) exhibit different compatibilization efficiencies at the same areal concentrations. This indicates that the molecular architecture plays a critical role in their compatibilization efficiency. To understand these observations, detailed analysis has been performed. Specifically, the relative shape anisometry of the graft copolymers, which is defined as the ratio of their gyration tensor elements in directions normal and parallel to the surface, is found to be strongly correlated to their compatibilization efficiency. Furthermore, we have investigated three specific graft copolymer types, namely, double-end-grafted (side chains concentrated near both chain ends of the backbone), mid-grafted (side chains concentrated on the center of the backbone), and single-end-grafted (side chains only concentrated near one end of the backbone), to understand the influence of varying side chain distributions. Compared to all other series, the mid-grafted copolymers exhibit the best compatibilization efficiency. Combining the obtained DPD results with five models of machine learning (ML), including linear regression (LR), elastic net (EN), random forest (RF), extra tree (ET), and gradient boosting (GB), provides effective predictions for the compatibilization efficiency. The GB model, which yields the best accuracy, has been further used to acquire the feature importance rank (FIR). Starting from these ML models and the FIR analysis, we have developed a framework for fast predictions of the compatibilization efficiency of graft copolymers. This novel framework utilizes physical insights into effects of material properties, such as chemistries and molecular architectures, on the compatibilization efficiency of graft copolymers and paves the way for advanced design of polymer compatibilizers.
AB - Graft copolymers are widely used as compatibilizers in homopolymer blends. Computational modeling techniques for predicting the compatibilization efficiency of such polymeric materials have substantially accelerated their development. We employ an efficient particle-based simulation method, namely dissipative particle dynamics (DPD), to systematically investigate the compatibilization efficiency of graft copolymers for a wide range of design parameters such as polymer chemistry, backbone and side chain lengths, and the number of side chains. We find that regular graft copolymers (with regular side chain distribution) exhibit different compatibilization efficiencies at the same areal concentrations. This indicates that the molecular architecture plays a critical role in their compatibilization efficiency. To understand these observations, detailed analysis has been performed. Specifically, the relative shape anisometry of the graft copolymers, which is defined as the ratio of their gyration tensor elements in directions normal and parallel to the surface, is found to be strongly correlated to their compatibilization efficiency. Furthermore, we have investigated three specific graft copolymer types, namely, double-end-grafted (side chains concentrated near both chain ends of the backbone), mid-grafted (side chains concentrated on the center of the backbone), and single-end-grafted (side chains only concentrated near one end of the backbone), to understand the influence of varying side chain distributions. Compared to all other series, the mid-grafted copolymers exhibit the best compatibilization efficiency. Combining the obtained DPD results with five models of machine learning (ML), including linear regression (LR), elastic net (EN), random forest (RF), extra tree (ET), and gradient boosting (GB), provides effective predictions for the compatibilization efficiency. The GB model, which yields the best accuracy, has been further used to acquire the feature importance rank (FIR). Starting from these ML models and the FIR analysis, we have developed a framework for fast predictions of the compatibilization efficiency of graft copolymers. This novel framework utilizes physical insights into effects of material properties, such as chemistries and molecular architectures, on the compatibilization efficiency of graft copolymers and paves the way for advanced design of polymer compatibilizers.
UR - http://www.scopus.com/inward/record.url?scp=85137897705&partnerID=8YFLogxK
U2 - 10.1021/acs.macromol.2c00821
DO - 10.1021/acs.macromol.2c00821
M3 - Article
AN - SCOPUS:85137897705
SN - 0024-9297
VL - 55
SP - 7893
EP - 7907
JO - Macromolecules
JF - Macromolecules
IS - 17
ER -