TY - JOUR
T1 - Classical noncommutative electrodynamics with external source
AU - Adorno, T. C.
AU - Gitman, D. M.
AU - Shabad, A. E.
AU - Vassilevich, D. V.
PY - 2011/9/1
Y1 - 2011/9/1
N2 - In a U(1)*-noncommutative gauge field theory we extend the Seiberg-Witten map to include the (gauge-invariance-violating) external current and formulate-to the first order in the noncommutative parameter-gauge- covariant classical field equations. We find solutions to these equations in the vacuum and in an external magnetic field, when the 4-current is a static electric charge of a finite size a, restricted from below by the elementary length. We impose extra boundary conditions, which we use to rule out all singularities, 1/r included, from the solutions. The static charge proves to be a magnetic dipole, with its magnetic moment being inversely proportional to its size a. The external magnetic field modifies the long-range Coulomb field and some electromagnetic form factors. We also analyze the ambiguity in the Seiberg-Witten map and show that at least to the order studied here it is equivalent to the ambiguity of adding a homogeneous solution to the current-conservation equation.
AB - In a U(1)*-noncommutative gauge field theory we extend the Seiberg-Witten map to include the (gauge-invariance-violating) external current and formulate-to the first order in the noncommutative parameter-gauge- covariant classical field equations. We find solutions to these equations in the vacuum and in an external magnetic field, when the 4-current is a static electric charge of a finite size a, restricted from below by the elementary length. We impose extra boundary conditions, which we use to rule out all singularities, 1/r included, from the solutions. The static charge proves to be a magnetic dipole, with its magnetic moment being inversely proportional to its size a. The external magnetic field modifies the long-range Coulomb field and some electromagnetic form factors. We also analyze the ambiguity in the Seiberg-Witten map and show that at least to the order studied here it is equivalent to the ambiguity of adding a homogeneous solution to the current-conservation equation.
UR - http://www.scopus.com/inward/record.url?scp=80053924211&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.84.065003
DO - 10.1103/PhysRevD.84.065003
M3 - Article
AN - SCOPUS:80053924211
SN - 1550-7998
VL - 84
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 6
M1 - 065003
ER -