TY - GEN
T1 - CAPSTONE
T2 - 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023
AU - He, Xingwei
AU - Gong, Yeyun
AU - Jin, A-Long
AU - Zhang, Hang
AU - Dong, Anlei
AU - Jiao, Jian
AU - Yiu, Siu-Ming
AU - Duan, Nan
N1 - Publisher Copyright:
©2023 Association for Computational Linguistics.
PY - 2023
Y1 - 2023
N2 - The dual-encoder has become the de facto architecture for dense retrieval. Typically, it computes the latent representations of the query and document independently, thus failing to fully capture the interactions between the query and document. To alleviate this, recent research has focused on obtaining query-informed document representations. During training, it expands the document with a real query, but during inference, it replaces the real query with a generated one. This inconsistency between training and inference causes the dense retrieval model to prioritize query information while disregarding the document when computing the document representation. Consequently, it performs even worse than the vanilla dense retrieval model because its performance heavily relies on the relevance between the generated queries and the real query. In this paper, we propose a curriculum sampling strategy that utilizes pseudo queries during training and progressively enhances the relevance between the generated query and the real query. By doing so, the retrieval model learns to extend its attention from the document alone to both the document and query, resulting in high-quality query-informed document representations. Experimental results on both in-domain and out-of-domain datasets demonstrate that our approach outperforms previous dense retrieval models.
AB - The dual-encoder has become the de facto architecture for dense retrieval. Typically, it computes the latent representations of the query and document independently, thus failing to fully capture the interactions between the query and document. To alleviate this, recent research has focused on obtaining query-informed document representations. During training, it expands the document with a real query, but during inference, it replaces the real query with a generated one. This inconsistency between training and inference causes the dense retrieval model to prioritize query information while disregarding the document when computing the document representation. Consequently, it performs even worse than the vanilla dense retrieval model because its performance heavily relies on the relevance between the generated queries and the real query. In this paper, we propose a curriculum sampling strategy that utilizes pseudo queries during training and progressively enhances the relevance between the generated query and the real query. By doing so, the retrieval model learns to extend its attention from the document alone to both the document and query, resulting in high-quality query-informed document representations. Experimental results on both in-domain and out-of-domain datasets demonstrate that our approach outperforms previous dense retrieval models.
UR - http://www.scopus.com/inward/record.url?scp=85184795148&partnerID=8YFLogxK
M3 - Conference Proceeding
AN - SCOPUS:85184795148
T3 - EMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings
SP - 10531
EP - 10541
BT - EMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings
A2 - Bouamor, Houda
A2 - Pino, Juan
A2 - Bali, Kalika
PB - Association for Computational Linguistics (ACL)
Y2 - 6 December 2023 through 10 December 2023
ER -