TY - JOUR
T1 - Broadband Response Diaphragm Materials for Human Acoustics Engineering
AU - Bi, Hongfu
AU - Wei, Yuan
AU - Zhou, Yang
AU - He, Yingying
AU - Wang, Chunyu
AU - Zhang, Cheng
AU - Chen, Jie
AU - Cao, Jiawei
AU - Ding, Xiaofeng
AU - Zhou, Jianming
AU - Chen, Gang
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2025/1/8
Y1 - 2025/1/8
N2 - High-performance fiber-reinforced composite materials demonstrate great potential for manufacturing diaphragms in human-engineered acoustic loudspeakers. However, the notable scarcity of high-quality fibers and the uncontrollable nature of the diaphragm structure limit the production of high-quality sound that conforms to human hearing. In this study, a novel composite diaphragm material is devloped by integrating the swelling carboxymethyl cellulose microfiber (CMF) with the hot-melted sheath-core fiber (SCF) based on the “interpenetrating polymeric network” (“IPN”) strategy. Simulation methods and Flory-Huggins theory are applied to explain the mechanism of fiber-structure-property interaction in composite diaphragm materials. Owing to the distinct microstructure, this bio-based diaphragm material shows superior mechanical characteristics, including low density (≈0.92 g cm−3), high tensile strength (≈235 MPa), and high modulus (≈9.73 GPa). Moreover, the loudspeaker mounted with bio-based diaphragm material exhibits enhanced sensitivity (≈82.6 dB) and stable performance across a broad frequency spectrum. This study not only elucidates the multiphysics working principles of loudspeakers but also establishes a crucial connection between the physical properties of diaphragms and loudspeaker performance. It opens up new avenues for the design of high-performance bio-based loudspeaker diaphragms in high-fidelity (Hi-Fi) acoustic devices.
AB - High-performance fiber-reinforced composite materials demonstrate great potential for manufacturing diaphragms in human-engineered acoustic loudspeakers. However, the notable scarcity of high-quality fibers and the uncontrollable nature of the diaphragm structure limit the production of high-quality sound that conforms to human hearing. In this study, a novel composite diaphragm material is devloped by integrating the swelling carboxymethyl cellulose microfiber (CMF) with the hot-melted sheath-core fiber (SCF) based on the “interpenetrating polymeric network” (“IPN”) strategy. Simulation methods and Flory-Huggins theory are applied to explain the mechanism of fiber-structure-property interaction in composite diaphragm materials. Owing to the distinct microstructure, this bio-based diaphragm material shows superior mechanical characteristics, including low density (≈0.92 g cm−3), high tensile strength (≈235 MPa), and high modulus (≈9.73 GPa). Moreover, the loudspeaker mounted with bio-based diaphragm material exhibits enhanced sensitivity (≈82.6 dB) and stable performance across a broad frequency spectrum. This study not only elucidates the multiphysics working principles of loudspeakers but also establishes a crucial connection between the physical properties of diaphragms and loudspeaker performance. It opens up new avenues for the design of high-performance bio-based loudspeaker diaphragms in high-fidelity (Hi-Fi) acoustic devices.
KW - cellulose-based composite material
KW - interpenetrating polymeric networks
KW - loudspeaker diaphragm
KW - multiphysics
UR - http://www.scopus.com/inward/record.url?scp=85208173671&partnerID=8YFLogxK
U2 - 10.1002/smll.202406559
DO - 10.1002/smll.202406559
M3 - Article
C2 - 39501967
AN - SCOPUS:85208173671
SN - 1613-6810
VL - 21
JO - Small
JF - Small
IS - 1
M1 - 2406559
ER -