Boosting FFPE-to-HE Virtual Staining with Cell Semantics from Pretrained Segmentation Model

Yihuang Hu, Qiong Peng, Zhicheng Du, Guojun Zhang, Huisi Wu, Jingxin Liu, Hao Chen, Liansheng Wang*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

Abstract

Histopathological samples are typically processed by formalin fixation and paraffin embedding (FFPE) for long-term preservation. To visualize the blurry structures of cells and tissue in FFPE slides, hematoxylin and eosin (HE) staining is commonly utilized, a process that involves sophisticated laboratory facilities and complicated procedures. Recently, virtual staining realized by generative models has been widely utilized. The blurry cell structure in FFPE slides poses challenges to well-studied FFPE-to-HE virtual staining. However, most existing researches overlook this issue. In this paper, we propose a framework for boosting FFPE-to-HE virtual staining with cell semantics from pretrained cell segmentation models (PCSM) as the well-trained PCSM has learned effective representation for cell structure, which contains richer cell semantics than that from a generative model. Thus, we learn from PCSM by utilizing the high-level and low-level semantics of real and virtual images. Specifically, We propose to utilize PCSM to extract multiplescale latent representations from real and virtual images and align them. Moreover, we introduce the low-level cell location guidance for generative models, informed by PCSM. We conduct extensive experiments on our collected dataset. The results demonstrate a significant improvement of our method over the existing network qualitatively and quantitatively. Code is available at https://github.com/huyihuang/FFPE-to-HE.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention - MICCAI 2024 - 27th International Conference, Proceedings
EditorsMarius George Linguraru, Aasa Feragen, Ben Glocker, Julia A. Schnabel, Qi Dou, Stamatia Giannarou, Karim Lekadir
PublisherSpringer Science and Business Media Deutschland GmbH
Pages67-76
Number of pages10
ISBN (Print)9783031723834
DOIs
Publication statusPublished - 2024
Event27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024 - Marrakesh, Morocco
Duration: 6 Oct 202410 Oct 2024

Publication series

NameLecture Notes in Computer Science
Volume15003 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024
Country/TerritoryMorocco
CityMarrakesh
Period6/10/2410/10/24

Keywords

  • Cell semantics
  • FFPE-to-HE virtual staining
  • Generative adversarial network

Fingerprint

Dive into the research topics of 'Boosting FFPE-to-HE Virtual Staining with Cell Semantics from Pretrained Segmentation Model'. Together they form a unique fingerprint.

Cite this