TY - JOUR
T1 - Binding mechanism of caffeic acid and simvastatin to the integrin linked kinase for therapeutic implications
T2 - a comparative docking and MD simulation studies
AU - Gulzar, Mehak
AU - Ali, Shahid
AU - Khan, Faez Iqbal
AU - Khan, Parvez
AU - Taneja, Pankaj
AU - Hassan, Md Imtaiyaz
N1 - Publisher Copyright:
© 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2019
Y1 - 2019
N2 - Integrin linked kinase (ILK) is a Ser/Thr kinase, which regulates various integrin mediated signaling pathways, and is involved in cell adhesion, migration and differentiation. Alteration in the ILK is responsible for abnormal functioning of the cell system, which may lead to the cancer progression and metastasis. Caffeic acid (CA) and simvastatin are used as antioxidant and possess anticancer properties. Thus, inhibiting the kinase activity of ILK by CA and simvastatin may be implicated in the cancer therapy. In this study, we have performed molecular docking followed by 100 ns MD simulations to understand the interaction mechanism of ILK protein with the CA and simvastatin. Average potential energy was found to be highest in case of ILK–CA complex (−770,949 kJ/mol). Binding free energy was found to be higher in case of simvastatin than CA. Our results indicate that simvastatin binds more effectively to the active pocket of ILK. We further performed MTT assay to understand its anticancer potential. Simvastatin shows the IC50 values for HepG2 and MCF-7 as 19.18 ± 0.12 and 13.84 ± 0.22 µM, respectively. However, the IC50 value of CA on HepG2 and MCF-7 was reported as 175.50 ± 1.44 and 144.90 ± 1.53 µM, respectively. Our study provides a deeper insight into the binding mechanism of simvastatin and CA to ILK, which further opens a promising channel for their implications in cancer therapy.
AB - Integrin linked kinase (ILK) is a Ser/Thr kinase, which regulates various integrin mediated signaling pathways, and is involved in cell adhesion, migration and differentiation. Alteration in the ILK is responsible for abnormal functioning of the cell system, which may lead to the cancer progression and metastasis. Caffeic acid (CA) and simvastatin are used as antioxidant and possess anticancer properties. Thus, inhibiting the kinase activity of ILK by CA and simvastatin may be implicated in the cancer therapy. In this study, we have performed molecular docking followed by 100 ns MD simulations to understand the interaction mechanism of ILK protein with the CA and simvastatin. Average potential energy was found to be highest in case of ILK–CA complex (−770,949 kJ/mol). Binding free energy was found to be higher in case of simvastatin than CA. Our results indicate that simvastatin binds more effectively to the active pocket of ILK. We further performed MTT assay to understand its anticancer potential. Simvastatin shows the IC50 values for HepG2 and MCF-7 as 19.18 ± 0.12 and 13.84 ± 0.22 µM, respectively. However, the IC50 value of CA on HepG2 and MCF-7 was reported as 175.50 ± 1.44 and 144.90 ± 1.53 µM, respectively. Our study provides a deeper insight into the binding mechanism of simvastatin and CA to ILK, which further opens a promising channel for their implications in cancer therapy.
KW - Integrin-linked kinase
KW - caffeic acid
KW - kinase inhibitor
KW - simvastatin: MD simulation
UR - http://www.scopus.com/inward/record.url?scp=85060054379&partnerID=8YFLogxK
U2 - 10.1080/07391102.2018.1546621
DO - 10.1080/07391102.2018.1546621
M3 - Article
C2 - 30488773
AN - SCOPUS:85060054379
SN - 0739-1102
VL - 37
SP - 4327
EP - 4337
JO - Journal of Biomolecular Structure and Dynamics
JF - Journal of Biomolecular Structure and Dynamics
IS - 16
ER -