Abstract
Programmed cell death ligend-1 (PD-L1) expression by immunohistochemistry (IHC) assays is a predictive marker of anti-PD-1/PD-L1 therapy response. With the popularity of anti-PD-1/PD-L1 inhibitor drugs, quantitative assessment of PD-L1 expression becomes a new labor for pathologists. Manually counting the PD-L1 positive stained tumor cells is an obviously subjective and time-consuming process. In this paper, we developed a new computer aided Automated Tumor Proportion Scoring System (ATPSS) to determine the comparability of image analysis with pathologist scores. A three-stage process was performed using both image processing and deep learning techniques to mimic the actual diagnostic flow of the pathologists. We conducted a multi-reader multi-case study to evaluate the agreement between pathologists and ATPSS. Fifty-one surgically resected lung squamous cell carcinoma were prepared and stained using the Dako PD-L1 (22C3) assay, and six pathologists with different experience levels were involved in this study. The TPS predicted by the proposed model had high and statistically significant correlation with sub-specialty pathologists’ scores with Mean Absolute Error (MAE) of 8.65 (95% confidence interval (CI): 6.42–10.90) and Pearson Correlation Coefficient (PCC) of 0.9436 (p< 0.001), and the performance on PD-L1 positive cases achieved by our method surpassed that of non-subspecialty and trainee pathologists. Those experimental results indicate that the proposed automated system can be a powerful tool to improve the PD-L1 TPS assessment of pathologists.
Original language | English |
---|---|
Article number | 15907 |
Journal | Scientific Reports |
Volume | 11 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2021 |
Externally published | Yes |