TY - JOUR
T1 - Augmented Reality Visualization for Image-Guided Surgery
T2 - A Validation Study Using a Three-Dimensional Printed Phantom
AU - Glas, H. H.
AU - Kraeima, J.
AU - van Ooijen, P. M.A.
AU - Spijkervet, F. K.L.
AU - Yu, L.
AU - Witjes, M. J.H.
N1 - Publisher Copyright:
© 2021 The Authors
PY - 2021/9
Y1 - 2021/9
N2 - Background: Oral and maxillofacial surgery currently relies on virtual surgery planning based on image data (CT, MRI). Three-dimensional (3D) visualizations are typically used to plan and predict the outcome of complex surgical procedures. To translate the virtual surgical plan to the operating room, it is either converted into physical 3D-printed guides or directly translated using real-time navigation systems. Purpose: This study aims to improve the translation of the virtual surgery plan to a surgical procedure, such as oncologic or trauma surgery, in terms of accuracy and speed. Here we report an augmented reality visualization technique for image-guided surgery. It describes how surgeons can visualize and interact with the virtual surgery plan and navigation data while in the operating room. The user friendliness and usability is objectified by a formal user study that compared our augmented reality assisted technique to the gold standard setup of a perioperative navigation system (Brainlab). Moreover, accuracy of typical navigation tasks as reaching landmarks and following trajectories is compared. Results: Overall completion time of navigation tasks was 1.71 times faster using augmented reality (P = .034). Accuracy improved significantly using augmented reality (P < .001), for reaching physical landmarks a less strong correlation was found (P = .087). Although the participants were relatively unfamiliar with VR/AR (rated 2.25/5) and gesture-based interaction (rated 2/5), they reported that navigation tasks become easier to perform using augmented reality (difficulty Brainlab rated 3.25/5, HoloLens 2.4/5). Conclusion: The proposed workflow can be used in a wide range of image-guided surgery procedures as an addition to existing verified image guidance systems. Results of this user study imply that our technique enables typical navigation tasks to be performed faster and more accurately compared to the current gold standard. In addition, qualitative feedback on our augmented reality assisted technique was more positive compared to the standard setup.?>
AB - Background: Oral and maxillofacial surgery currently relies on virtual surgery planning based on image data (CT, MRI). Three-dimensional (3D) visualizations are typically used to plan and predict the outcome of complex surgical procedures. To translate the virtual surgical plan to the operating room, it is either converted into physical 3D-printed guides or directly translated using real-time navigation systems. Purpose: This study aims to improve the translation of the virtual surgery plan to a surgical procedure, such as oncologic or trauma surgery, in terms of accuracy and speed. Here we report an augmented reality visualization technique for image-guided surgery. It describes how surgeons can visualize and interact with the virtual surgery plan and navigation data while in the operating room. The user friendliness and usability is objectified by a formal user study that compared our augmented reality assisted technique to the gold standard setup of a perioperative navigation system (Brainlab). Moreover, accuracy of typical navigation tasks as reaching landmarks and following trajectories is compared. Results: Overall completion time of navigation tasks was 1.71 times faster using augmented reality (P = .034). Accuracy improved significantly using augmented reality (P < .001), for reaching physical landmarks a less strong correlation was found (P = .087). Although the participants were relatively unfamiliar with VR/AR (rated 2.25/5) and gesture-based interaction (rated 2/5), they reported that navigation tasks become easier to perform using augmented reality (difficulty Brainlab rated 3.25/5, HoloLens 2.4/5). Conclusion: The proposed workflow can be used in a wide range of image-guided surgery procedures as an addition to existing verified image guidance systems. Results of this user study imply that our technique enables typical navigation tasks to be performed faster and more accurately compared to the current gold standard. In addition, qualitative feedback on our augmented reality assisted technique was more positive compared to the standard setup.?>
UR - http://www.scopus.com/inward/record.url?scp=85108540821&partnerID=8YFLogxK
U2 - 10.1016/j.joms.2021.04.001
DO - 10.1016/j.joms.2021.04.001
M3 - Article
C2 - 34033801
AN - SCOPUS:85108540821
SN - 0278-2391
VL - 79
SP - 1943.e1-1943.e10
JO - Journal of Oral and Maxillofacial Surgery
JF - Journal of Oral and Maxillofacial Surgery
IS - 9
ER -