Abstract
Zero-shot learning (ZSL) aims to classify images from unseen categories, by merely utilizing seen class images as the training data. Existing works on ZSL mainly leverage the global features or learn the global regions, from which, to construct the embeddings to the semantic space. However, few of them study the discrimination power implied in local image regions (parts), which, in some sense, correspond to semantic attributes, have stronger discrimination than attributes, and can thus assist the semantic transfer between seen/unseen classes. In this paper, to discover (semantic) regions, we propose the attentive region embedding network (AREN), which is tailored to advance the ZSL task. Specifically, AREN is end-to-end trainable and consists of two network branches, i.e., the attentive region embedding (ARE) stream, and the attentive compressed second-order embedding (ACSE) stream. ARE is capable of discovering multiple part regions under the guidance of the attention and the compatibility loss. Moreover, a novel adaptive thresholding mechanism is proposed for suppressing redundant (such as background) attention regions. To further guarantee more stable semantic transfer from the perspective of second-order collaboration, ACSE is incorporated into the AREN. In the comprehensive evaluations on four benchmarks, our models achieve state-of-the-art performances under ZSL setting, and compelling results under generalized ZSL setting.
Original language | English |
---|---|
Title of host publication | Conference on Computer Vision and Pattern Recognition (CVPR), 2019 |
Publisher | IEEE Computer Society |
Pages | 9376-9385 |
Number of pages | 10 |
ISBN (Electronic) | 9781728132938 |
DOIs | |
Publication status | Published - Aug 2019 |
Event | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States Duration: 16 Jun 2019 → 20 Jun 2019 |
Conference
Conference | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 |
---|---|
Country/Territory | United States |
City | Long Beach |
Period | 16/06/19 → 20/06/19 |
Keywords
- Categorization
- Deep Learning
- Recognition: Detection
- Representation Learning
- Retrieval