AR Digi-Component: AR-Assisted, Real-Time, Immersive Design and Robotic Fabrication Workflow for Parametric Architectural Structures

Yang Song, Richard Koeck, Shan Luo

Research output: Contribution to conferencePaperpeer-review

Abstract

This research project, entitled AR Digi-Component, tries to digitalize the traditional architectural components and combines Augmented Reality (AR) technologies to explore new possibilities for architectural design and assembly. AR technology and Digitalize components will help to achieve a real-time immersive design and an AR-assisted robotic fabrication process through the augmented environments. As part of the AR Digi-Component project, we created an experimental design prototype in which designers gestures are being identified in AR real-time immersive design process, and a fabrication prototype in which traditional 2D drawings are being replaced by 3D on-site holographic guidance, followed by an assembly process in which robotic operations are being controlled by humans within an AR simulation to enhance the assembly efficiency and safety. In this paper, we are sharing the preliminary research results of such AR-assisted tests, for which we used a UR10 Robotic arm in combination with Microsoft HoloLens as well as in terms of software Rhino, HAL Robotics, FURobot, PX Simulate, and Fologram plugin in Grasshopper, to demonstrate new kind of applications and workflow of AR technology for real-time, immersive design and robotic fabrication.
Original languageEnglish
Publication statusPublished - 2021

Fingerprint

Dive into the research topics of 'AR Digi-Component: AR-Assisted, Real-Time, Immersive Design and Robotic Fabrication Workflow for Parametric Architectural Structures'. Together they form a unique fingerprint.

Cite this