Applications and analysis of bio-inspired eagle strategy for engineering optimization

Xin She Yang*, Mehmet Karamanoglu, T. O. Ting, Yu Xin Zhao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

All swarm-intelligence-based optimization algorithms use some stochastic components to increase the diversity of solutions during the search process. Such randomization is often represented in terms of random walks. However, it is not yet clear why some randomization techniques (and thus why some algorithms) may perform better than others for a given set of problems. In this work, we analyze these randomization methods in the context of nature-inspired algorithms. We also use eagle strategy to provide basic observations and relate step sizes and search efficiency using Markov theory. Then, we apply our analysis and observations to solve four design benchmarks, including the designs of a pressure vessel, a speed reducer, a PID controller, and a heat exchanger. Our results demonstrate that eagle strategy with Le´vy flights can perform extremely well in reducing the overall computational efforts.

Original languageEnglish
Pages (from-to)411-420
Number of pages10
JournalNeural Computing and Applications
Volume25
Issue number2
DOIs
Publication statusPublished - Aug 2014

Keywords

  • Algorithm
  • Eagle strategy
  • Le´vy flight
  • Markov theory
  • Optimization
  • Random walks

Fingerprint

Dive into the research topics of 'Applications and analysis of bio-inspired eagle strategy for engineering optimization'. Together they form a unique fingerprint.

Cite this