TY - JOUR
T1 - Animated interval scatter-plot views for the exploratory analysis of large-scale microarray time-course data
AU - Craig, Paul
AU - Kennedy, Jessie
AU - Cumming, Andrew
PY - 2005/9/1
Y1 - 2005/9/1
N2 - Microarray technologies are a relatively new development that allow biologists to monitor the activity of thousands of genes (normally around 8,000) in parallel across multiple stages of a biological process. While this new perspective on biological functioning is recognised as having the potential to have a significant impact on the diagnosis, treatment, and prevention of diseases, it is only through effective analysis of the data produced that biologists can begin to unlock this potential. A significant obstacle to achieving effective analysis of microarray time-course is the combined scale and complexity of the data. This inevitably makes it difficult to reveal certain significant patterns in the data. In particular, it is less dominant patterns and, specifically, patterns that occur over smaller intervals of an experiment's overall time-frame that are more difficult to find. While existing techniques are capable of finding either unexpected patterns of activity over the majority of an experiment's time-frame or expected patterns of activity over smaller intervals of the time-frame, there are no techniques, or combination of techniques, that are suitable for finding unsuspected patterns of activity over smaller intervals. In order to overcome this limitation we have developed the Time-series Explorer, which specifically supports biologists in their attempts to reveal these types of pattern by allowing them to control an animated interval scatter-plot view of their data. This paper discusses aspects of the technique that make such an animated overview viable and describes the results of a user evaluation assessing the practical utility of the technique within the wider context of microarray time-series analysis as a whole.
AB - Microarray technologies are a relatively new development that allow biologists to monitor the activity of thousands of genes (normally around 8,000) in parallel across multiple stages of a biological process. While this new perspective on biological functioning is recognised as having the potential to have a significant impact on the diagnosis, treatment, and prevention of diseases, it is only through effective analysis of the data produced that biologists can begin to unlock this potential. A significant obstacle to achieving effective analysis of microarray time-course is the combined scale and complexity of the data. This inevitably makes it difficult to reveal certain significant patterns in the data. In particular, it is less dominant patterns and, specifically, patterns that occur over smaller intervals of an experiment's overall time-frame that are more difficult to find. While existing techniques are capable of finding either unexpected patterns of activity over the majority of an experiment's time-frame or expected patterns of activity over smaller intervals of the time-frame, there are no techniques, or combination of techniques, that are suitable for finding unsuspected patterns of activity over smaller intervals. In order to overcome this limitation we have developed the Time-series Explorer, which specifically supports biologists in their attempts to reveal these types of pattern by allowing them to control an animated interval scatter-plot view of their data. This paper discusses aspects of the technique that make such an animated overview viable and describes the results of a user evaluation assessing the practical utility of the technique within the wider context of microarray time-series analysis as a whole.
KW - Bioinformatics
KW - animation
KW - evaluation
KW - microarray
KW - time-series
UR - http://www.scopus.com/inward/record.url?scp=84993741804&partnerID=8YFLogxK
U2 - 10.1057/palgrave.ivs.9500101
DO - 10.1057/palgrave.ivs.9500101
M3 - Article
AN - SCOPUS:84993741804
SN - 1473-8716
VL - 4
SP - 149
EP - 163
JO - Information Visualization
JF - Information Visualization
IS - 3
ER -