Abstract
Let A/K be an elliptic curve over a global field of characteristic p > 0. We provide an example where the Pontrjagin dual of the Selmer group of A over a Γ := ℤp-extension L/K is not a torsion ℤp[[Γ]]-module and show that the Iwasawa Main Conjecture for A/L holds nevertheless.
Original language | English |
---|---|
Pages (from-to) | 2355-2364 |
Number of pages | 10 |
Journal | Proceedings of the American Mathematical Society |
Volume | 143 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2015 |
Keywords
- Abelian variety
- Frobenius
- Iwasawa theory
- Selmer group
- Stickelberger element
- Syntomic
Fingerprint
Dive into the research topics of 'An example of non-cotorsion Selmer group'. Together they form a unique fingerprint.Cite this
Lai, K. F., Longhi, I., Tan, K. S., & Trihan, F. (2015). An example of non-cotorsion Selmer group. Proceedings of the American Mathematical Society, 143(6), 2355-2364. https://doi.org/10.1090/S0002-9939-2015-12459-8