An Asymptotic Result on Catastrophe Insurance Losses

Yiqing Chen, Jiajun Liu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Consider an insurer who both sells catastrophe insurance policies and makes risky investments. Suppose that insurance claims arrive according to a Poisson process and the price of the investment portfolio evolves according to a general stochastic process independent of the insurance claims. In the focus of catastrophe risk management are catastrophe insurance losses. For the case of heavy-tailed claims, we derive a simple asymptotic formula for the tail probability of the present value of future claims. The transparent expression of our formula explicitly reflects the different roles of the various underlying risks in driving catastrophic losses. Our work is distinguished from most other works in this strand of research in that we carry out the asymptotic study over the whole class of subexponential distributions. Thus, our work allows both very heavy-tailed distributions such as Pareto-type distributions and moderately heavy-tailed distributions such as Lognormal and Weibull distributions.

Original languageEnglish
Pages (from-to)426-437
Number of pages12
JournalNorth American Actuarial Journal
Volume28
Issue number2
DOIs
Publication statusAccepted/In press - 2023

Fingerprint

Dive into the research topics of 'An Asymptotic Result on Catastrophe Insurance Losses'. Together they form a unique fingerprint.

Cite this